

Lecture Notes in Computer Science 3798
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Alan Dearle Susan Eisenbach (Eds.)

Component
Deployment

Third InternationalWorking Conference, CD 2005
Grenoble, France, November 28-29, 2005
Proceedings

13

Volume Editors

Alan Dearle
University of St Andrews, School of Computer Science
North Haugh, St Andrews, Fife KY16 9SX, UK
E-mail: al@dcs.st-andrews.ac.uk

Susan Eisenbach
Imperial College London, Department of Computing
180 Queens Gate, London, SW7 2BZ, UK
E-mail: s.eisenbach@imperial.ac.uk

Library of Congress Control Number: 2005936342

CR Subject Classification (1998): D.2, F.3, D.1, D.3, D.4

ISSN 0302-9743
ISBN-10 3-540-30517-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30517-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11590712 06/3142 5 4 3 2 1 0

Preface

This volume of Lecture Notes in Computer Science contains the proceedings of the
3rd Working Conference on Component Deployment (CD 2005), which took place
from 28 to 29, November 2005 in Grenoble, France, and co-located with
Middleware 2005. CD 2005 is the third international conference in the series, the
first two being held in Berlin and Edinburgh in 2002 and 2004, respectively. The
proceedings of both these conferences were also published by Springer in the
Lecture Notes in Computer Science series and may be found in volumes 2370 and
3083.

Component deployment addresses the tasks that need to be performed after
components have been developed and addresses questions such as:

• What do we do with components after they have been built?
• How do we deploy them into their execution environment?
• How can we evolve them once they have been deployed?

CD 2005 brought together researchers and practitioners with the goal of develo-
ping a better understanding of how deployment takes place in the wider context. The
Program Committee selected 15 papers (12 long papers, three short papers) out of 29
submissions. All submissions were reviewed by at least three members of the
Program Committee. Papers were selected based on originality, quality, soundness
and relevance to the workshop.

We would like to thank the members of the Program Committee (Mikio Aoyama,
Noureddine Belkhatir, Judy Bishop, Paul Brebner, Wolfgang Emmerich, Thomas
Gschwind, Richard Hall, Andre van der Hoek, Nenad Medvidovic, Andrea Polini and
Peter Sewell) for providing timely and significant reviews, and for their substantial
effort in making CD 2005 a successful workshop.

We would also like to thank the following additional reviewers: Doug Palmer, Sam
Malek, Chris Mattmann, Andrew J. McCarthy, Marija Mikic-Rakic, Chiyoung Seo
and Rob Chatley for their assistance in reviewing papers.

The CD 2005 submission and review process was supported by the Cyber Chair
Conference Management System. We are indebted to the services of Borbola Online
Conference Services and in particular Richard van de Stadt for their excellent support
in managing this system. Andrew J. McCarthy must also be thanked for his diligent
efforts in collating the papers in these proceedings.

The workshop was held in conjunction with Middleware 2005. We would like to
acknowledge the help from the Middleware 2005 Organizing Committee for their
assistance, during the organization of CD 2005, in creating this co-located event.

We would also like to acknowledge the prompt and professional support from
Springer, who published these proceedings in printed and electronic volumes as part
of the Lecture Notes in Computer Science series.

September 2005 Alan Dearle
 Susan Eisenbach

Organization

Program Committee

Program Chairs

• Alan Dearle
University of St Andrews, UK
al@dcs.st-and.ac.uk

• Susan Eisenbach
Imperial College, London, UK
sue@doc.ic.ac.uk

Program Committee Members

• Mikio Aoyama
Network Information and Software Engineering Laboratory, Japan
mikio.aoyama@nifty. com

• Noureddine Belkhatir
IMAG LSR, Grenoble, France
Noureddine.Belkhatir@imag. fr

• Judy Bishop
University of Pretoria, South Africa
jbishop@cs.up.ac.za

• Paul Brebner
CSIRO ICT Centre, Canberra, Australia
Paul.Brebner@csiro.au

• Wolfgang Emmerich
University College London, UK
w.emmerich@cs.ucl.ac.uk

• Thomas Gschwind
Technische Universität Wien, Austria
thomasg@ieee.org

• Richard Hall
IMAG LSR, Grenoble, France
heavy@ungoverned.org

• Andre van der Hoek
University of California, Irvine, USA
andre@ics.uci.edu

• Nenad Medvidovic
University of Southern California, Los Angeles, USA
neno@usc.edu

VIII Organization

• Andrea Polini
CNR, Pisa, Italy
andrea.polini@isti.cnr.it

• Peter Sewell
University of Cambridge, UK
Peter.Sewell@cl.cam.ac.uk

• Kurt Wallnau
Carnegie Mellon University, Pittsburgh, USA
kcw@sei.cmu.edu

• Alexander Wolf
University of Lugano, Switzerland
alexander.wolf@unisi.ch

Table of Contents

Middleware Integration

Cooperative Component-Based Software Deployment in Wireless Ad
Hoc Networks

Hervé Roussain, Frédéric Guidec . 1

Infrastructure for Automatic Dynamic Deployment of J2EE
Applications in Distributed Environments

Anatoly Akkerman, Alexander Totok, Vijay Karamcheti 17

Patterns for Deployment

Component Deployment Using a Peer-to-Peer Overlay
Stéphane Frénot, Yvan Royon . 33

A Methodology for Developing and Deploying Distributed Applications
Graham N.C. Kirby, Scott M. Walker, Stuart J. Norcross,
Alan Dearle . 37

QOS Issues

Crosslets: Self-managing Application Deployment in a Cross-Platform
Operating Environment

Stefan Paal, Reiner Kammüller, Bernd Freisleben 52

DAnCE: A QoS-Enabled Component Deployment and Configuration
Engine

Gan Deng, Jaiganesh Balasubramanian, William Otte,
Douglas C. Schmidt, Aniruddha Gokhale . 67

Adaptability, Customisation and Format Aware
Deployment

Improving Availability in Large, Distributed Component-Based
Systems Via Redeployment

Marija Mikic-Rakic, Sam Malek, Nenad Medvidovic 83

X Table of Contents

A Decentralized Redeployment Algorithm for Improving the
Availability of Distributed Systems

Sam Malek, Marija Mikic-Rakic, Nenad Medvidovic 99

Dependability

Propagative Deployment of Hierarchical Components in a Dynamic
Network

Didier Hoareau, Yves Mahéo . 115

Modelling Deployment Using Feature Descriptions and State Models
for Component-Based Software Product Families

Slinger Jansen, Sjaak Brinkkemper . 119

Assembly and Packaging

J2EE Packaging, Deployment and Reconfiguration Using a General
Component Model

Takoua Abdellatif, Jakub Kornaś, Jean-Bernard Stefani 134

A Model of Dynamic Binding in .NET
Alex Buckley . 149

Case Studies

Reuse Frequency as Metric for Dependency Resolver Selection
Karl Pauls, Till G. Bay . 164

ORYA: A Strategy Oriented Deployment Framework
Pierre-Yves Cunin, Vincent Lestideau, Noëlle Merle 177

Deployment of Infrastructure and Services in the Open Grid Services
Architecture (OGSA)

Paul Brebner, Wolfgang Emmerich . 181

Author Index . 197

Cooperative Component-Based Software Deployment
in Wireless Ad Hoc Networks

Hervé Roussain and Frédéric Guidec

University of South Brittany, France
{Herve.Roussain, Frederic.Guidec}@univ-ubs.fr

Abstract. This paper presents a middleware platform we designed in order to al-
low the deployment of component-based software applications on mobile devices
(such as laptops or personal digital assistants) capable of ad hoc communication.
This platform makes it possible to disseminate components based on peer-to-peer
interactions between neighboring devices, without relying on any kind of infras-
tructure network. It implements a cooperative deployment scheme. Each device
runs a deployment manager, which maintains a local component repository, and
which strives to fill this repository with software components it is missing in
order to satisfy the deployment requests expressed by the user. To achieve this
goal the deployment manager continuously interacts in the background with peer
managers located on neighboring devices, providing its neighbors with copies of
software components it owns locally, while obtaining itself from these neighbors
copies of the components it is looking for.

1 Introduction

The number and variety of lightweight mobile devices capable of wireless communica-
tion is growing significantly. Such devices include laptops, tablet PCs, personal digital
assistants (PDAs), many of which are now shipped with built-in IEEE 802.11 (a.k.a.
Wi-Fi [1]) network interfaces. With such interfaces, the devices can occasionally be
connected to an infrastructure network, using so-called access points that play the role
of gateways. But the 802.11 standard also makes it possible for mobile devices to com-
municate directly in ad hoc mode, that is, without relying on any kind of infrastructure
network. An ad hoc network is thus a network that can appear and evolve spontaneously
as mobile devices themselves appear, move and disappear dynamically in and from the
network [9].

For the users of laptops or PDAs, the prospect of deploying software applications
on these devices as and when needed obviously appears as an attractive one, no matter
if these devices communicate in infrastructure or in ad hoc mode. Yet, solutions for
component-based software deployment have been proposed mostly for infrastructure-
based environments so far, while very little effort has been devoted to software deploy-
ment in purely ad hoc networks.

In this paper we describe a model we devised in order to allow the deployment
of component-based software applications on mobile devices participating in an ad
hoc network. In Section 2 we motivate our approach by showing how infrastructure-
based networks and ad hoc networks constitute radically different environments as far

A. Dearle and S. Eisenbach (Eds.): CD 2005, LNCS 3798, pp. 1–16, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 H. Roussain and F. Guidec

as software deployment is concerned, and we show that solutions that prove efficient
in infrastructure environments are hardly applicable in ad hoc environments. In Sec-
tion 3 we present CODEWAN (COmponent DEployment in Wireless Ad hoc Networks),
a middleware platform that implements our model. The main characteristics of this plat-
form are discussed in Section 4, which also lists some directions we plan to work along
in the future. In Section 5 we compare CODEWAN with other works that also address
the problem of software deployment, either in infrastructure environments, or in ad hoc
environments. Section 6 concludes the paper.

2 Motivations

In this section we show that deploying software components in an ad hoc network raises
issues that usually do not appear in infrastructure networks. As a reminder, we first
describe how software component provision and delivery are commonly performed in
an infrastructure-based environment. We then show that an ad hoc network presents
additional constraints that need to be addressed specifically.

2.1 Software Deployment in an Infrastructure Network

Figure 1 illustrates a typical infrastructure network, including stable and mobile hosts—
typically, workstations and laptops—interconnected through gateways (such as routers
and switches). In such an environment some of the stable hosts can be in charge of
storing components in so-called component repositories, and of implementing server
programs capable of delivering these components on demand. Other hosts in the net-
work can then behave as simple clients with respect to these servers. Whenever the
owner—or the administrator—of one of the client hosts initiates the deployment of a
new component-based software application on this device, the problem mostly comes
down to locating the server—or servers—capable of providing the components required
by this application, and downloading these components so they can be installed locally.

Consider the example shown in Figure 1, and assume that the owner of device A
decides to initiate the installation on this device of an application that requires compo-
nents c1, c2 and c3. The deployment middleware running on device A must first identify

Fig. 1. Illustration of software component deployment in an infrastructure network

Cooperative Component-Based Software Deployment in Wireless Ad Hoc Networks 3

one or several servers capable of delivering these components. A component may ac-
tually be provided by several servers, for example in order to balance the workload in
the network, or to allow fault tolerance. In any case, once a client has identified a server
that can provide a component, obtaining this component simply requires its download
between the server and the client. Note that in such a context the deployment of a com-
ponent on a given host can usually be considered as a “real time” operation: once a user
has ordered the deployment middleware to locate and download a component, this oper-
ation can usually be performed immediately. In the remaining of this section, we show
that deploying components in an ad hoc environment can in contrast require a more
lengthy process, which requires some middleware capable of enforcing a deployment
strategy in the background on behalf of the user.

2.2 Software Deployment in a Dynamic Ad Hoc Network

Figure 2 shows a typical dynamic ad hoc network, which consists of a collection of
portable communicating devices. The devices in such a network are usually highly mo-
bile and volatile. Device mobility results from the fact that each device is carried by
a user, and users themselves move quite a lot. Device volatility is the consequence of
the fact that, since the devices usually have a limited power-budget, they are frequently
switched on and off by their owners.

A major characteristic of wireless ad hoc networks is that communication interfaces
have a limited transmission range. Consequently any device can only communicate
directly with neighboring devices. Multi-hop transmissions can sometimes be obtained
by implementing a dynamic routing algorithm on each device [10,13], but it is worth
observing that even with dynamic routing, a realistic ad hoc network often presents
itself as a fragmented network. Such a network appears as a—possibly changing—
collection of so-called “islands” (also referred to as “clouds” or “cells” in the literature).
Mobile devices that belong to the same island can communicate together, using either
multi-hop or single-hop transmissions depending on whether dynamic routing is used or
not in the network. However, devices that belong to distinct islands cannot communicate
together, because no transmission is possible between islands.

Fig. 2. Illustration of software component deployment in a dynamic ad hoc network

4 H. Roussain and F. Guidec

In such a context, a traditional client-server deployment scheme such as that illus-
trated in Section 2.1 is hardly applicable, as no device is stable and accessible enough
to play the role of a server of components, maintaining a component repository and
allowing client devices to access this repository whenever needed.

In the remainder of this paper, we present a model we propose in order to al-
low for these constraints. Basically, instead of being able to access a server whenever
needed, each device must maintain a local component repository. A peer-to-peer in-
teraction model then makes it possible for a device to cooperate with its neighbor-
hood, by allowing its neighbors to obtain copies of the software components avail-
able on its local repository, while itself benefiting from a similar service offered by its
neighbors.

Consider the example shown in Figure 2, and assume again that the owner of de-
vice A wishes to install on this device an application that requires components c1, c2
and c3. In our example, A can obtain components c1 and c2 from device B. But as
devices C and E—that both own a copy of component c3—are (possibly temporar-
ily) unreachable, A cannot obtain a copy of component c3 from any of these devices.
Yet A could obtain component c3 from device C if this device was switched on by
its user. It could also obtain this component from device E if A’s user happened to
walk towards E, or if E’s user happened to walk toward A. A roaming device such
as D may even serve as a benevolent carrier between E and A, transporting compo-
nent c3—and possibly other components as well—between separate islands, and thus
contributing to the dissemination of software components and applications all over the
network.

This example shows that when the owner of a mobile device participating in an ad
hoc network requests the deployment of a component-based application on this device,
there is no guarantee that this request can be satisfied immediately, as there is no guar-
antee that the components required for this deployment are readily accessible in the
neighborhood. Yet, since the topology of an ad hoc network can change continuously
and unpredictably as devices move and are switched on or off, the fact that a given
component cannot be obtained at a given time does not involve that this component will
remain inaccessible in the future. There is thus a need for some deployment middleware
capable of ensuring the collection of missing components in the background in order to
satisfy the user’s needs.

3 Towards Software Component Deployment on Mobile Devices

In this section, we present an overview of CODEWAN (COmponent DEployment in
Wireless Ad hoc Networks), a platform we designed in order to support the deployment
of component-based software applications on mobile devices communicating in ad hoc
mode. CODEWAN implements a cooperative model, where neighboring devices inter-
act in order to discover and exchange software components. Each device implements a
local component repository, and a deployment manager is responsible for maintaining
this repository on behalf of the user. Any component stored in the repository can be
used to assemble and start an application locally. Copies of this component can also be
sent on demand to neighboring devices.

Cooperative Component-Based Software Deployment in Wireless Ad Hoc Networks 5

3.1 Overview of the CODEWAN Platform

The platform is built as a three-layer model, as shown in Figure 3. The upper and lower
layers in this model have been described in details in [7] and [3] respectively. They
are thus only described briefly below, and the paper then continues with a detailed
description of the model’s central layer, which implements the component repository
and the deployment manager that maintains this repository.

Fig. 3. Overview of the CODEWAN platform and screenshot of its GUI on a PDA

The upper layer in the platform is meant to provide a framework for assembling
and running applications. Instead of defining its own component-model, CODEWAN

was designed so as to rely on existing execution frameworks for component-oriented or
service-oriented applications. In its current implementation it interfaces with JAMUS,
a runtime framework that is primarily dedicated to hosting potentially malicious mo-
bile applications [7], as well as with JULIA, an execution framework for applications
designed using the Fractal component model [12].

The lower layer in our model was designed in order to support the asynchronous
dissemination of so-called transfer documents in an ad hoc network. A transfer docu-
ment is an XML document whose external element’s attributes specify the conditions
required for disseminating the document in the network. These attributes thus play ap-
proximately the same role as header fields in IP packets or in UDP datagrams. They in-
dicate typically the document’s source and destination, the expected propagation scope
for this document, etc.

The “payload” of a transfer document consists of the internal XML elements that
are embedded in the document. Any kind of structured information can be transported
in a transfer document. In CODEWAN, though, transfer documents are used to transport
software package descriptors in the network.

Figure 4 shows a typical transfer document. Attributes in this document indicate
that it was sent by device shiva, and that it was addressed to any device in the neigh-
borhood (notice that the communication layer CODEWAN relies on supports the use
of wildcard addresses). The payload in this transfer document consists of a package
descriptor, whose role and structure are detailed in Section 3.3.

6 H. Roussain and F. Guidec

< t rans fe r−document
document−i d =" fb54356fe468d9 "
source= " dev i ce : sh i va " d e s t i n a t i o n=" dev ice : ∗ "
hops−to−l i v e = " 3 " l i f e t i m e =" 01 :00:00 "
serv ice−type= " package−advert isement ">
<package−d e s c r i p t o r>

<general−i n f o rma t i on
type=" a p p l i c a t i o n / java " category = " communication / messaging "
name=" JMessager " vers ion = " 1.3 "
p rov i de r= " Laborato i re V a l o r i a "
summary= " JMessager i s a P2P messager " / >

<java−a p p l i c a t i o n name="masc . jmessager . JMessagerImpl " / >
<dependencies >

<requ i red−package name= " JMessengerUI " vers ion = " 1.2 " / >
<requ i red−package name= " P2PAsyncDissemination" / >
<op t i ona l−package name= " AddressBook " vers ion = " 2.0 " / >

< / dependencies >
< / package−d e s c r i p t o r>

< / t rans fe r−document>

Fig. 4. Example of an XML transfer document carrying a software package descriptor

The communication layer in CODEWAN provides services for encapsulating trans-
fer documents in UDP datagrams. Large XML documents can be fragmented and then
transported in distinct, smaller transfer documents that each can fit in a single UDP
datagram. The communication layer of course supports the re-assembly of such frag-
ments after they have been received from the network. Documents can be transferred
either in unicast, broadcast, or multicast mode, and using either single-hop or multi-
hop transmissions. In the latter case, all mobile devices in the network are expected
to behave as routers, using algorithms for dynamic routing and flooding such as those
described in [13,11,14].

Further details about CODEWAN’s communication layer can be found in [3]. In the
remainder of this paper we focus on the description of the central layer of the platform.
The deployment manager is implemented in this layer, together with the component
repository this manager is in charge of maintaining. The repository is a place where
software components can be stored locally on a mobile device. Components stored in
this repository are thus readily available for the execution framework that constitutes
the upper layer of the platform. The deployment manager takes orders from the user,
and interacts with peer managers that reside on neighboring devices in order to fill the
local repository with components required by the user, while providing its peers with
components they need in order to satisfy their own users.

3.2 Installation Steps in CODEWAN

The deployment manager can provide the user with information about all the applica-
tions it knows about. At any time a given application is either:

– installed locally (meaning that this application is either already running in the local
execution framework, or ready to be loaded and started in this framework);

– installable (meaning that all the components required for running this application
are available in the local repository, so the application could be installed immedi-
ately if the user requested it);

Cooperative Component-Based Software Deployment in Wireless Ad Hoc Networks 7

– not installable yet (meaning that some of the components required by this applica-
tion are not present in the local repository).

Besides observing the status of each application, the user can modify this status, re-
questing for example that an application be started (which implies that this application
be already installed locally), or that an application be uninstalled (and all its compo-
nents removed from the repository). Additionally the user can initiate the deployment
of an application, thus instructing the deployment manager to try to obtain any missing
component for this application from neighboring devices.

CODEWAN implements a basic user interface that can run in console mode. Ad-
ditionally, graphical interfaces have been designed in order to facilitate the interaction
between the user and the deployment manager running on a mobile device. For example
Figure 3 shows an interface that was designed specifically for personal digital assistants.

3.3 Software Components, Applications, and Packages

The deployment of component-based applications implies that components be trans-
mitted in the network, and stored in local repositories. Before they can be loaded and
executed in a runtime framework, software components are encapsulated in so-called
software packages, that can be considered as storage and transfer envelopes for these
components. Besides encapsulating the actual code of the components, software pack-
ages can additionally encapsulate some data required by a software component or ap-
plication. They can also encapsulate documents describing the overall architecture of a
component-based application (such as CCM component assemblies [8], or architecture
descriptors in the Fractal model [12]).

Package Descriptors. Each software package in CODEWAN is associated with a pack-
age descriptor. This descriptor provides information about the package’s identity, its
content, its category, etc. It can be embedded in the package itself, but it can also be
processed separately. For example, the transfer document shown in Figure 4 encapsu-
lates a package descriptor as its payload. In a typical scenario such a document could
be broadcast by a device in order to inform its neighbors about a software package that
is available in its local repository.

The package descriptor shown in Figure 4 actually describes the main component
of a Java messaging application (as specified by attribute type in the descriptor). It
provides general information about the application, such as its name, version number,
provider, etc. It also indicates that in order to be assembled the application requires com-
ponents that can themselves be found in three other software packages. Two of these
packages are absolutely needed for assembling the application, while the third one can
be used optionally in order to improve the functionality of the application. This exam-
ple shows that when the components encapsulated in a particular package depend on
components that are encapsulated in other packages, this information is mentioned ex-
plicitly in package descriptors. Dependencies between packages can also appear when a
package contains only the description of the architecture of an application, while other
packages encapsulate components that are required for assembling this application, or
data that are needed for running this application.

8 H. Roussain and F. Guidec

Software Packages. As mentioned above, software packages can encapsulate software
components, as well as plain data or application architecture descriptions. A software
package usually encapsulates its own descriptor, but this descriptor can also be extracted
from the package and processed separately whenever needed.

In the current implementation of the CODEWAN platform, application data and the
code of software components are encoded using the Base64 standard. The result of this
encoding is then encapsulated as CDATA information in an XML document.

3.4 Main Functionalities of the Deployment Manager

The deployment manager running on a mobile device is notably responsible for main-
taining a local component repository on this device, while interacting with peer man-
agers located on neighboring devices. Among other things the deployment manager can:

1. decide what packages and package descriptors should be stored in the local repos-
itory and, if necessary, what packages and descriptors should be removed from this
repository;

Notice that since mobile devices are usually resource-constrained, the deploy-
ment manager might sometimes have to reclaim the space occupied by unused, yet
potentially interesting packages.

2. announce to its neighbors what packages are available locally, thus indicating that
these packages can be delivered on demand;

Announcing the availability of a package is performed by broadcasting a transfer
document that encapsulates the descriptor of this package, as shown in Figure 4.
Such an announcement can be broadcast periodically, or when a new device appears
in the neighborhood. It can also be broadcast after a request has been received from
a neighbor, as described in the next three items.

3. search the neighborhood for specific packages, or for packages that satisfy precise
criteria;

Package searching is performed by broadcasting a transfer document that en-
capsulates a “request for descriptors”. Such a request compares with a standard
package descriptor, except that each attribute in the request defines a regular ex-
pression. Any deployment manager receiving a request can thus match this request
against the descriptors of the packages stored on its local repository. If one or sev-
eral of these descriptors match the request, then the deployment manager answers
this request by announcing the availability of the matching packages, as described
in item 2.

4. discover what packages are available in the neighborhood;
This is performed by broadcasting a “request for descriptors” as explained in the

former item, except that this request is not selective at all: it actually calls for the
announcement of all the packages available in the neighborhood.

5. ask a neighbor for the transmission of one—or several—particular package(s);
This is performed by sending the targeted neighbor a “request for packages”,

which is similar to a “request for descriptors” except that the neighbor is expected
to return the desired packages, rather than simply announce that it owns these pack-
ages. The actual transmission of software packages can be performed either in

Cooperative Component-Based Software Deployment in Wireless Ad Hoc Networks 9

unicast, multicast, or broadcast mode, depending on the configuration of the send-
ing deployment manager.

6. receive packages from a neighbor, and decide for each package if it should be stored
on the local repository.

The deployment manager can be expected to accept and store packages it has
itself requested before. But since packages can sometimes be broadcast—as ex-
plained above—the deployment manager may also receive packages it has never
requested. In such a case the deployment manager can be configured so as to im-
plement a hoarding policy, storing packages that may prove interesting in the future.

The basic operations mentioned in the above list make it possible to devise and imple-
ment a number of different strategies for cooperative component deployment. Actually,
while designing the CODEWAN platform we intentionally defined a comprehensive set
of functionalities so as to allow a large number of interaction patterns between neigh-
boring deployment managers. Several alternative deployment strategies can thus be im-
plemented based on these functionalities. Part of our current work is now devoted to
devising such strategies, and observing how they perform in realistic conditions.

Although a large number of deployment scenarios can be considered, the next sec-
tion describes the major steps these scenarios can be based on.

3.5 Major Steps in a Deployment Scenario

Learning About New Applications. At any time the deployment manager running on
a mobile device maintains in the local repository a collection of application descriptors.
As explained in Section 3.2 some of these descriptors correspond to applications that
are not installable yet, meaning that some of the packages required for assembling these
applications are not available locally. The deployment manager can thus “know” about
the existence of an application (because it owns a descriptor of this application), even
though this application is not yet installed locally.

A basic approach for a deployment manager to learn about new applications is sim-
ply to listen to the network in order to collect transfer documents that contain applica-
tion descriptors, while broadcasting itself the descriptors of the applications stored in
its repository. Neighboring deployment managers thus spontaneously inform each other
about existing applications.

Initiation of a New Application Deployment. In order to initiate the deployment of a
new application on a mobile device, the user can rely on the interface of the deployment
manager, and select with this interface an application that is not installed yet. This
scenario however implies that the local deployment manager must already know about
the existence of this application.

Alternatively a user may know about an application the deployment manager itself
has never heard about. In such a case the user can inform the deployment manager about
the name of this application, and the deployment manager will then start looking for the
corresponding descriptor in the neighborhood.

Identification of Missing Packages. Once the descriptor of the desired application
is available, the deployment manager can examine the dependencies described in this

10 H. Roussain and F. Guidec

descriptor in order to determine what other packages are needed for assembling this
application.

Remember that several applications may be assembled out of the same set of compo-
nents. The packages needed to assemble a new application may thus be already available
locally, as they may have been collected before in order to assemble and start another
application. Note also that the deployment manager may implement a hoarding policy,
storing unused packages “just in case” in the local repository. Consequently, in the best
circumstances, when determining what packages are needed for assembling an applica-
tion the deployment manager may actually discover that all these packages are already
present in the local repository. In such a case the deployment of the application can be
considered as complete.

In most cases, though, when the user asks for the deployment of a new application
the deployment manager is likely to discover that a number of required packages are
missing in the local repository. For each application whose deployment is in progress
the deployment manager maintains a list of desired packages (some kind of a “shopping
list”, actually). Once the packages required for a given application have been identified,
their identity is appended to the corresponding “shopping list”.

The deployment manager runs a background process that aims at collecting any
package whose identity appears in at least one of the “shopping lists” it maintains.

Search for Missing Packages. Searching for packages is a proactive operation that
consists in broadcasting “requests for descriptors”. This operation can be performed
either periodically, or it can be triggered by an event, such as the detection of a new
device in the neighborhood.

A request is a transfer document that contains a list of desired packages. Neighbor-
ing devices that own some of these packages are expected to reply by announcing the
availability of these packages.

Note that since announcements are broadcast in the network, a deployment manager
can sometimes discover passively that a number of packages it is looking for are avail-
able in the neighborhood. Packages can thus be located simply by listening to broadcast
announcements. CODEWAN makes it possible to combine both forms of package dis-
covery (proactive and reactive) in a single deployment strategy.

Download of Missing Packages. Whenever the deployment manager discovers that
some of the packages it is looking for are available on a neighbor device, it can react by
sending a “request for packages”, thus asking that the desired packages be transmitted
in the network.

After receiving one of the packages it has requested, the deployment manager stores
this package in the local repository, and removes its name from its “shopping lists”.
The descriptor of the package must also be analyzed in order to check if this package
depends on other packages that are not available locally. If so, then these packages
must also be considered as requested packages, and their names be appended to the
deployment manager’s “shopping lists”.

Completion or Termination of an Application’s Deployment. The deployment of an
application is complete when the corresponding “shopping list” is empty, which means
that all the packages required for assembling this application have been collected and

Cooperative Component-Based Software Deployment in Wireless Ad Hoc Networks 11

are now available in the local repository. The application can then be considered as
installable, and be presented as such to the user through the user interface.

The user can also decide to cancel the deployment of a particular application at any
time. In that case the “shopping list” maintained by the deployment manager for this
application is discarded, and the packages that have already been collected and stored
in the local repository are marked as unused (unless they are indeed used by another
locally installed application, and unless their names appear in another local “shopping
list”). Unused packages can be maintained by the deployment manager in the local
repository as long as there remains enough space to receive and store other desired
packages. Otherwise the deployment manager is entitled to remove unused packages
whenever there is a need to free storage space in the repository.

4 Discussion and Future Work

4.1 Efficiency Considerations

The model we propose for cooperative software deployment on mobile devices is inher-
ently a probabilistic one. Indeed, when a user requests that a given application be de-
ployed on a mobile device, there is no absolute guarantee that the deployment manager
on this device will ever manage to collect the required packages. It is worth mentioning
that this lack of guarantee is a consequence of the characteristics inherent to dynamic
ad hoc networking, rather than a limitation of the model itself. However the model can
be adapted in order to account for these constraints.

For example, in order to increase the chance that the requests of the user can be
satisfied, the deployment manager in the CODEWAN platform was designed so as to
exhibit a persistent behavior. Whenever it cannot obtain a number of packages from its
current set of neighbors, the deployment manager simply persists and tries to obtain
these packages later, after its neighborhood has changed. Device mobility and volatility
thus become advantages in this process, as the neighborhood of a device is not limited
to a fixed set of neighbors. Whenever a package cannot be found at a given time in the
neighborhood, there is always a chance that it can be found in the future.

The actual efficiency of our model in realistic conditions depends on a large num-
ber of factors, such as the geographical distribution of mobile devices, their speed, the
frequency at which devices are switched on and off by their users, data transmission
rates, the amount of storage space available in each device’s local repository, the size
of software packages, the number of packages required to assemble an application, etc.
Work is now in progress in order to evaluate the average efficiency of our model in
different conditions, based on simulations, and based on actual experimentation with
CODEWAN-enabled mobile devices.

4.2 Towards Adaptive Software Deployment

In the current implementation of the CODEWAN platform, the deployment manager
running on a mobile device must be configured manually by the user of this device.
For example it can be configured so as to announce periodically the packages it owns

12 H. Roussain and F. Guidec

locally, and to broadcast periodically a request indicating the packages it is looking for.
In both cases, though, the user is responsible for choosing the appropriate periodicity
for these transmissions.

The user must likewise determine how much storage space must be assigned to the
local repository (which can be implemented either in memory or in the filesystem), and
whether the deployment manager should implement a hoarding policy (storing in its
local repository any package it receives from the network, even if this package is not
mentioned in a local “shopping list”).

Future work will notably focus on the development of a strategy manager capable
of adjusting the behavior of a deployment manager transparently and continuously on
behalf of the user. For example the periodicity for announcing local packages and re-
questing desired packages could be adjusted dynamically based on the mobility of a
device, on observations of its neighborhood, or on internal events (such as the local
device being suspended or resumed). The hoarding policy implemented by a deploy-
ment manager may likewise be guided by statistics about the requests received from the
neighborhood: a deployment manager that frequently receives requests for a package it
does not own locally may decide to try to collect this package so as to help multiply its
copies—and thus its overall availability—in the ad hoc network.

4.3 Security Considerations

The approach we propose for deploying software applications on mobile devices re-
lies on the assumption that the owners of these devices may find it convenient to share
software components with each other using ad hoc communication. This approach ob-
viously raises a number of legitimate concerns regarding security, as the owner of a
mobile device may for example be reluctant to run on this device pieces of software
obtained from unidentified sources. We believe that this problem may be solved satis-
factorily by using digital signatures so as to ascertain the origin of a software compo-
nent, as well as ciphering in order to limit the use of a given component to a particular
community of users. These are directions we plan to investigate in the near future.

4.4 Compatibility with Standard Component Models and Frameworks

CODEWAN is not strongly dependent on a specific execution framework, or on a partic-
ular component model. Actually the focus in this platform is put on the dissemination
of software components rather than on the assembly and execution of component-based
applications per se. In our opinion CODEWAN should quite easily accommodate almost
any component model and any execution framework. The only condition is that com-
ponents in the model considered can be transmitted and stored in packages, and that the
execution framework can be adapted so as to take components from the local repository
maintained by the platform’s deployment manager, rather than from a legacy repository.

CODEWAN currently interfaces with two execution frameworks called JAMUS and
JULIA. JAMUS is a security-oriented execution framework we designed, which pro-
vides a resource-constrained environment for untrusted Java applications [7]. JULIA is

Cooperative Component-Based Software Deployment in Wireless Ad Hoc Networks 13

a framework that implements the Fractal component model [12]. Ongoing work aims at
interfacing CODEWAN with OSCAR, a service-oriented framework for OSGi bundles [4].

5 Related Work

Java Web Start [17] and Apache Maven [18] both support the deployment and the update
of Java-based application programs. They are primarily meant to be used on stable, fully
connected, infrastructure networks, though. They rely on a client-server model: a server
(or a collection of servers in Maven) maintains a repository where applications can be
stored, and clients can download new applications—or new versions of applications
they have already downloaded—from this server.

A number of papers have proposed to apply the client-server model for software
deployment in ad hoc networks. For example, JDRUMS [2] implements a content de-
livery system for software components. It relies on dedicated devices that host server
programs called “JSTOREs”. These server programs must register with a JINI lookup
service in order to be located by the devices on which some software is to be deployed.
Although mobile, pervasive devices are targeted in this work, the JSTOREs and the
lookup service are assumed to be stable at any time, and available whenever needed.

As explained in Section 2 we believe that the traditional client-server model is
hardly applicable for deploying and updating software in an autonomous ad hoc net-
work, although it usually performs most satisfactorily in an infrastructure network. As
an alternative to the client-server model we propose to rely on cooperative, peer-to-peer
interactions between neighboring mobile devices. To our knowledge, this approach has
not really been investigated so far, although cooperative software deployment has been
considered in infrastructure-based environments, and proposals have been made to sup-
port code mobility or information dissemination in ad hoc networks.

SoftwareDock is a framework for distributed software deployment that uses mobile
agents to support the transfer of software applications between so-called producers and
consumers [5]. This approach thus compares with the client-server model. Moreover
SoftwareDock is primarily meant to be used in infrastructure networks, as the prime
motivation in this work is to allow load balancing and fault tolerance between software
producers. Tacoma [16] is another system that relies on mobile agents to deploy com-
ponents. Like SoftwareDock, though, it does not specifically address the problem of
component deployment in ad hoc networks.

CORBA-LC defines the notion of CORBA Lightweight Component, and a number
of design and implementation requirements for deploying such components are iden-
tified in [15]. This paper notably suggests that components should be deployed using
a “peer network” model, where the whole network acts as a repository for managing
and assigning resources (including components). However, although [15] observes that
spurious node failures and node disconnections should be supported, our understanding
of this paper is that it too considers the deployment of components in a quasi-stable,
infrastructure-based environment.

Component deployment in ad hoc networks is specifically addressed in [6], which
describes a framework for service-oriented computing. The components considered in
this framework are actually proxy components, which must be deployed locally in order

14 H. Roussain and F. Guidec

to allow local clients to access remote services. Service directories and implementation
repositories are constructed and maintained using a distributed approach that implies
the opportunistic collaboration of neighboring hosts in the ad hoc network.

SATIN provides support for component-based, self organized systems on mobile
devices [19]. It supports the storage and the execution of components on a device, as
well as component advertisement, discovery and transfer between devices. SATIN is
meant to serve as a generic platform that offers self organization through logical mobil-
ity and componentization. As such it does not readily compare with CODEWAN, which
addresses specifically the problem of software deployment on mobile devices. Yet we
believe that SATIN could serve as a framework for developing a deployment system sim-
ilar to CODEWAN. This system would be dedicated to SATIN components, though (as
SATIN defines its own component model), just like CORBA-LC only considers the de-
ployment of CORBA components. In contrast CODEWAN is somehow more versatile.
It processes software packages (that can encapsulate any kind of components) rather
than the components themselves, and it delegates the problems of locally assembling
and running components to an associate execution framework.

6 Conclusion

In this paper we presented the CODEWAN platform, which is dedicated to the deploy-
ment of component-based software applications on mobile devices participating in an
ad hoc network. CODEWAN implements a peer-to-peer, cooperative model for software
deployment. With this model, each mobile device maintains a local repository that can
host a number of software components. The components stored in this repository are
available for the execution framework that constitutes the upper layer of the platform.
Neighboring devices can also exchange copies of the software components they own
based on a peer-to-peer interaction scheme. A deployment manager is responsible for
maintaining the local repository on a device, for interacting with peer deployment man-
agers that run on neighbor devices, and for collecting software components in order to
satisfy the requests of the owner of the local device.

The CODEWAN platform was implemented in Java and is now fully operational.
It currently interfaces with the execution frameworks JAMUS and JULIA, and it thus
supports the deployment and the execution of untrusted Java applications [7], as well
as that of applications designed using the Fractal component model [12]. CODEWAN

should also be able to support the deployment of OSGi bundles in the near future, using
the service-oriented framework OSCAR [4].

Ongoing work implies using this platform in realistic conditions in order to assess
its efficiency, and in order to compare the results obtained with alternative deployment
scenarios. Future work should aim at augmenting the platform’s functionality, for ex-
ample by integrating support for digitally signed and encrypted software components.

Acknowledgements

This work is supported by the “Conseil Régional de Bretagne” under contract B/1042
/2002/012/MASC.

Cooperative Component-Based Software Deployment in Wireless Ad Hoc Networks 15

References

1. Information Technology, Telecommunications and Information Exchange between Systems,
Local and Metropolitan Area Networks, Specific Requirements Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications. ANSI/IEEE Std
802.11, 1999.

2. Jesper Andersson. A Deployment System for Pervasive Computing. In Proceedings of the
International Conference on Software Maintenance (ICSM’2000), pages 262–270, San Jose,
October 2000.

3. Frédéric Guidec and Hervé Roussain. Asynchronous Document Dissemination in Dynamic
Ad Hoc Networks. In Second International Symposium on Parallel and Distributed Process-
ing and Applications (ISPA’04), pages 44–48, Hong-Kong, China, December 2004.

4. Richard S. Hall and Humberto Cervantes. An OSGi Implementation and Experience Report.
In IEEE Consumer Communications and Networking Conference, Las-Vegas, USA, January
2004.

5. Richard S. Hall, Dennis Heimbigner, and Alexander L. Wolf. A Cooperative Approach to
Support Software Deployment Using the Software Dock. In International Conference on
Software Engineering, pages 174–183, 1999.

6. Radu Handorean, Rohan Sen, Gregory Hackmann, and Gruia-Catalin Roman. A Compo-
nent Deployment Mechanism Supporting Service Oriented Computing in Ad Hoc Networks.
Technical Report WUCSE-04-02, Washington University, Department of Computer Science,
St. Louis, Missouri, 2004.

7. Nicolas Le Sommer and Frédéric Guidec. JAMUS: Java Accommodation of Mobile Un-
trusted Software. In 4th Nord EurOpen/Usenix Conference (NordU 2002), Helsinki, Finland,
February 2002. Best Paper.

8. OMG. Corba components, version 3.0, June 2002.
9. Charles Perkins. Ad Hoc Networking, pages 2–3. Addison-Wesley, 2001.

10. Pavel Poupyrev, Masakatsu Kosuga, and Peter Davis. Analysis of Wireless Message Broad-
cast in Large Ad Hoc Networks of PDAs. In Proceedings of the Fourth IEEE conference on
Mobile and Wireless Communications Networks, pages 299–303, 2002.

11. Pavel Poupyrev, Masakatsu Kosuga, and Peter Davis. Analysis of Wireless Message Broad-
cast in Large Ad Hoc Networks of PDAs. In Proceedings of the Fourth IEEE conference on
Mobile and Wireless Communications Networks, pages 299–303, 2002.

12. Éric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-Bernard Ste-
fani. An Open Component Model and Its Support in Java. In 7th International Sympo-
sium on Component-Based Software Engineering, pages 7–22. Springer-Verlag Heidelberg,
2004.

13. Elizabeth M. Royer and Chai-Keong Toh. A Review of Current Routing Protocols for Ad-
Hoc Mobile Wireless Networks. IEEE Personal Communications Magazine, pages 46–55,
April 1999.

14. Yoav Sasson, David Cavin, and André Schiper. Probabilistic Broadcast for Flooding in Mo-
bile Ad Hoc Networks. Technical Report IC/2002/54, Swiss Federal Institute of Technology
(EPFL), 2002.

15. Diego Sevilla, José M. García, and Antonio Gómez. Design and Implementation Require-
ments for CORBA Lightweight Components. In Proceedings of International Conference
on Parallel Processing. Workshop on Metacomputing Systems and Applications., pages 213–
218, sep 2001.

16 H. Roussain and F. Guidec

16. Nils P. Sudmann and Dag Johansen. Software Deployment Using Mobile Agents. In Ju-
dith Bishop, editor, Proceedings of the IFIP/ACM Working Conference on Component De-
ployment (CD 2002), volume 2370 of LNCS, pages 97–107, Berlin, Germany, June 2002.
Springer.

17. Sun Microsystems. Java Web Start 1.5.0 Documentation, 2004.
18. The Apache Software Foundation. Apache Maven. http://maven.apache.org/.
19. Stefanos Zachariadis, Cecilia Mascolo, and Wolfgang Emmerich. SATIN: A Component

Model for Mobile Self Organisation. In CoopIS/DOA/ODBASE (2), pages 1303–1321, 2004.

Infrastructure for Automatic Dynamic Deployment
of J2EE Applications in Distributed Environments

Anatoly Akkerman, Alexander Totok, and Vijay Karamcheti

Department of Computer Science,
Courant Institute of Mathematical Sciences,
New York University, New York, NY, USA

{akkerman, totok, vijayk}@cs.nyu.edu

Abstract. Recent studies have shown the potential of using component frame-
works for building flexible adaptable applications for deployment in distributed
environments. However this approach is hindered by the complexity of deploy-
ing component-based applications, which usually involve a great deal of con-
figuration of both the application components and system services they depend
on. In this paper we propose an infrastructure for automatic dynamic deploy-
ment of J2EE applications, that specifically addresses the problems of (1) inter-
component connectivity specification and its effects on component configura-
tion and deployment; and (2) application component dependencies on application
server services, their configuration and deployment. The proposed infrastructure
provides simple yet expressive abstractions for potential application adaptation
through dynamic deployment and undeployment of components. We report on
our experience with implementing the infrastructure as a part of the JBoss J2EE
application server and testing it on several sample J2EE applications.

1 Introduction

In recent years, we have seen a significant growth in component-based enterprise ap-
plication development. These applications are typically deployed on company Intranets
or on the Internet and are characterized by high transaction volume, large numbers
of users, and wide area access. Traditionally they are deployed in a central location,
using server clustering with load balancing (horizontal partitioning) to sustain user
load. However, horizontal partitioning has been shown to be effective only in reducing
application-related overheads of user-perceived response times, without having much
effect on network-induced latencies. Vertical partitioning (e.g., running web tier and
business tier in separate VMs) has been used for fault isolation and load balancing and
can in principle reduce network latencies but has traditionally been considered imprac-
tical due to significant run-time overheads (even if one keeps the tiers on a fast local-
area network) related to heavy use of remote invocations. The work in [1] has shown
that a handful of design patterns and application skeletons can enable efficient vertical
partitioning of component-based applications in wide-area networks without incurring
the aforementioned overheads. Using techniques proposed in that study in conjunction
with intelligent monitoring [2] and AI planning techniques [3,4], we see a potential

A. Dearle and S. Eisenbach (Eds.): CD 2005, LNCS 3798, pp. 17–32, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

18 A. Akkerman, A. Totok, and V. Karamcheti

for dynamic adaptation in industry-standard component-based applications (e.g., J2EE-
based), through demand-driven deployment of additional application components as
appropriate for changing application usage patterns.

However, in order to achieve such dynamic adaptation, we need an infrastructure
for automating component-based application deployment in distributed environments.
Taking the J2EE framework as an example, this need is quite evident to anyone who
has ever tried deploying a J2EE application even on a single application server, which
is a task that involves a great deal of configuration of both the application components
and system services they depend on. For example one has to set up JDBC data sources,
messaging destinations and other resource adapters before application components can
be configured and deployed. In a deployment that spans multiple server nodes, this
process proves even more complex, since more system services that facilitate inter-
node communications need to be configured and started and a variety of configuration
data, like IP addresses, port numbers, JNDI names and others have to be consistently
maintained in various configuration files on multiple nodes.

In general, a distributed deployment infrastructure must be able to:

– support inter-component connectivity specification and define its effects on com-
ponent configuration and deployment,

– address application component dependencies on application server services, their
configuration and deployment,

– provide simple but expressive abstractions to control adaptation through dynamic
deployment and undeployment of components,

– enable reuse of services and components to maintain efficient use of resources on
application server nodes,

– provide these facilities without incurring significant additional design effort on be-
half of application programmers.

In this paper, we describe an infrastructure for automatic deployment of J2EE ap-
plications, that addresses all of the aforementioned issues. The infrastructure defines
two architecture description languages (ADL) for component and link description and
component assembly respectively. The Component Description Language is used to
describe application components and links. It provides clear separation of application
components from system components. A flexible type system is used to define compat-
ibility of component ports and links. A declaration and expression language for config-
urable component properties allows for specification of inter-component dependencies
and propagation of properties between components. The Component (Replica) Assem-
bly Language allows for assembly of replicas of previously defined components into
application paths by connecting appropriate ports via link replicas and specifying the
mapping of these component replicas onto target application server nodes. In addition,
the infrastructure incorporates a Component Configuration Process, which evaluates an
application path’s correctness, identifies the dependencies of application components
on system components, and configures component replicas for deployment. An attempt
is made to match and reuse any previously deployed replicas in the new path based on
their configurations.

We have implemented the infrastructure as a part of the JBoss open source Java
application server [5] and tested it on several sample J2EE applications – Java Pet-

Infrastructure for Automatic Dynamic Deployment of J2EE Applications 19

Store [6], RUBiS [7] and TPC-W-NYU [8]. The infrastructure implementation utilizes
JBoss’s extensible micro-kernel architecture, based on the Java Management Exten-
sions (JMX) specification, to allow incremental service deployments depending on the
needs of deployed applications. We believe that dynamic reconfiguration of application
servers through dynamic deployment and undeployment of system services is essential
to building a resource-efficient framework for dynamic distributed deployment of J2EE
applications.

The rest of the paper is organized as follows. Section 2 provides necessary back-
ground for understanding the specifics of the J2EE component technology which are
relevant to this study. Section 3 gives a general description of the infrastructure archi-
tecture, while Section 4 goes deeper in describing particularily important and interesting
internal mechanisms of the infrastructure. Section 5 describes the implementation of the
framework. In Section 6 we report on our experience with using the infrastructure and
we conclude with a discussion of related work is Section 7.

2 J2EE Components

The infrastructure differentiates between application components and system compo-
nents (system services).1

Application components are typically custom developed for a given application,
like web-tier components (e.g., servlets and JSPs) and business-tier components (e.g.,
EJBs). The infrastructure also treats certain resources that are technically provided to
the application by system services as application components, since they tend to rep-
resent resources that are in exclusive use by the application. Such application compo-
nents are exemplified by JMS messaging destinations (e.g., topics and queues), and data
sources (e.g., JDBC connection pools managed by the application server).

System components are typically services or resources that are part of the under-
lying application server and are shared by several applications running in the same
application server. System components are exemplified by the JMS Messaging Service
and the Transaction Manager service.

2.1 Links Between Components

Remote Interactions. J2EE defines only three basic inter-component connection types
that can cross application server boundaries:

– Remote EJB invocation: synchronous EJB invocations through EJB Home and EJB
Object interfaces.

– Java Connector outbound connection: synchronous message receipt, synchronous
and asynchronous message sending, database query using ConnectionFactory and
Connection interfaces.

– Java Connector inbound connection: asynchronous message delivery into
Message-Driven Beans (MDBs) only, utilizing ActivationSpec objects.

1 For space reasons, the paper does not provide a high-level description of the J2EE framework.
The reader is referred to [9] for additional details.

20 A. Akkerman, A. Totok, and V. Karamcheti

In all scenarios, communication between components is accomplished through spe-
cial Java objects. In the first two cases, an application component developer writes the
code that performs lookup of these objects in the component’s run-time JNDI context
as well as code that issues method invocations or sends and receives messages. The
component’s run-time JNDI context is created for each deployment of the component.
Bindings in the context are initialized at component deployment time by the deployer
(usually by means of a component’s deployment descriptors). These bindings are as-
sumed to be static, since the J2EE specification does not provide any contract between
the container and the component to inform of any binding changes.

In the case of Java Connector inbound communication, ActivationSpec object
lookup and all subsequent interactions with it are done implicitly by the MDB con-
tainer. The protocol for lookup has not been standardized, though it is reasonable to
assume a JMX- or JNDI-based lookup.

Assuming the underlying application server provided facilities to control each step
of the deployment process, establishment of a link between J2EE components would
involve: (1) deployment of target component classes (optional for some components,
like destinations), (2) creation of a special Java object to be used as a target compo-
nent’s proxy, (3) binding of this object with the component’s host naming service (JNDI
or JMX), (4) start of the target component, (5) deployment of referencing component
classes, (6) creation and population of the referencing component’s run-time context in
its host naming service, and finally (7) start of the referencing component.

However, none of the modern application servers allow detailed control of the de-
ployment process for all component types beyond what is possible by limited options in
their deployment descriptors.2 Therefore, our infrastructure uses a simplified approach
that relies on the following features currently available on most application servers:

– ability to deploy messaging destinations and data sources dynamically,
– ability to specify initial binding of EJB Home objects upon EJB component de-

ployment,
– ability to specify a JNDI reference in the referencing component’s run-time context

to point to the EJB Home binding of the referenced EJB component.

In our infrastructure, which is currently limited to operating on homogeneous applica-
tion servers, these options are sufficient to control inter-component links through simple
deployment descriptor manipulation. Note however that for heterogeneous application
servers, simple JNDI references and thus simple descriptor manipulation are insufficient
due to cross-application-server classloading issues.

Local Interactions. Some interactions between components can occur only between
components co-located in the same application server JVM and sometimes only in the

2 For example, creation of EJB Home objects is usually automatically handled by the container,
as well as its binding into JNDI. Some servers, notably JBoss, allow custom creation of mul-
tiple EJB Home objects (utilizing different remote invocation transport protocols) for a single
EJB deployment, however their deployment is still coupled with deployment of the component
itself. Ideally, one should be able to deploy the EJB component and then dynamically deploy
any number of transport-specific EJB Home objects.

Infrastructure for Automatic Dynamic Deployment of J2EE Applications 21

same container. In the Web tier, examples of such interactions are servlet-to-servlet re-
quest forwarding. In the EJB tier, such interactions include CMP Entity relations and
invocations via EJB local interfaces. Such local deployment concerns need not be ex-
posed at the level of a distributed deployment infrastructure other than to ensure coloca-
tion. Therefore, our infrastructure treats all components requiring colocation as a single
component.

2.2 Deployment of System Components (Services)

While some of the issues of application component deployment were addressed with
the introduction of the J2EE Application Component Deployment Specification in J2EE
version 1.4, the J2EE standard falls short with respect to deployment of system services
(components). Not only is a standardized deployment facility for system services not
specified, the specification, in fact, places no requirements even on life cycle properties
of these services, nor does it address the issue of explicit specification of application
component dependencies on the underlying system services.

For example, an EJB with container managed transactions that declares at least one
method that supports/requires/starts a new transaction would require the presence of
a Transaction Manager service in the application server. Similarly, a message-driven
bean implicitly requires an instance of a messaging service running somewhere in the
network that hosts the messaging destination for the MDB and a Java Connector based
hook-up from within its hosting application server to this messaging service.

Given that applications would typically use only a subset of services provided by the
application server, componentized application servers that allow incremental service de-
ployments allow for most efficient utilization of server resources. There are some J2EE
application servers that are already fully or partially componentized, including open-
source application servers JBoss [5] and JOnAS [10]. We feel that dynamic reconfigu-
ration of application servers through deployment and undeployment of system services
is essential to building a resource-efficient framework for distributed deployment of
J2EE applications. Therefore we advocate and will use as a model a micro-kernel ap-
plication server design used by JBoss [11]. In this model a minimal server consists of
a service invocation bus, a robust classloading subsystem, and a dynamic deployment
subsystem. All other services are hot-deployable and communicate through the com-
mon invocation bus. Such an application server design facilitates explicit handling of
application component dependencies on system services and proper configuration and
deployment of only required system services.

3 Infrastructure Architecture

Table 1 introduces the definition of key infrastructure elements and terms used through-
out this paper. The infrastructure consists of a network containing multiple applica-
tion server nodes. Each application server node runs an infrastructure-controlled Agent
Service. These agents communicate with an instance of a Replication Management Ser-
vice (consisting of Component Registry, Replica Configuration and Replica Deployment
Services) running on one application server node (which can be dedicated). In addition,

22 A. Akkerman, A. Totok, and V. Karamcheti

Table 1. Definition of key infrastructure elements and terms

application
server (target)
node

computer system or a cluster of computers that run an instance of the
infrastructure-controlled application server

application
path

abstraction that represents a deployment (potential or actual) of component
replicas on infrastructure nodes such that these replicas are configured to prop-
erly communicate with each other preserving original application semantics

deployment
specification

description of application paths as used by the infrastructure; it is written in the
infrastructure-defined language and can be written manually, constructed by a
planning algorithm, or generated from a visual representation of an application
path using special visual editors

component
replica

deployment of a component; there could be multiple deployments of the same
component on different nodes and with different configurations

link abstraction of connectivity between two components
link replica instance of a link used to connect specific ports of specific component replicas

in a deployment specification

Agent

Service

Deployment Unit

Factory Service

JBoss

Replication Management Service

Replica

Configuration

Service

Component

Registry

Service

Replica

Deployment

Service

Persistent

Storage

store info

register app

Agent

Service

JBoss Agent

Service

Deployment Unit

Factory Service

JBoss Agent

Service

JBoss

prepare path

deploy path

2

4
4

5a

5

5a 5a

5a

5b

5b

5b

5b

5c
5c

Fig. 1. Infrastructure architecture

a Deployment Unit Factory Service (one or more) runs on some subset of the nodes (see
Fig. 1).

The infrastructure defines two architecture description languages (ADL) for com-
ponent and link description and component assembly respectively. The main features
of the Component Description Language are (1) a clear separation of system compo-
nents from application components, (2) a flexible type system for component ports and
links, (3) the ability to specify dependencies of both application and system compo-
nents on other system components, and (4) a declaration and expression language for
configurable component properties. The Component (Replica) Assembly Language al-
lows for assembly of replicas of previously defined components into application paths

Infrastructure for Automatic Dynamic Deployment of J2EE Applications 23

by connecting appropriate ports via link replicas and specifying the mapping of these
component replicas onto target application server nodes.

3.1 Infrastructure Usage

The usage of the infrastructure consists of the following set of steps (see also Fig. 1):

1. Initialization. The infrastructure is initialized with a description of available appli-
cation server nodes. This description is supplied by a network administrator, alter-
natively, the nodes may be configured to register themselves with the infrastructure
and provide sufficient information about themselves.

2. System components and application registration. The infrastructure has to be
initialized with descriptions of system and application components as well as links
prior to any requests for deployment of replicas of these components. These de-
scriptions (written in the Component Description Language) are registered with the
Component Registry Service. It is expected that an application server provider pre-
pares and registers a description of system services (system components) and links
that are available for dynamic deployment on compatible target nodes, while the
application vendor prepares a description of application components.

3. Writing the deployment path specification. The application deployer writes a
deployment path specification in the Component Assembly Language. In it s/he
specifies the placement of components on the target nodes and links that connect
them. The deployer may choose to write the specification by hand, or to use a GUI-
based path editing tool, which also serves as a user-friendly portal to the Replication
Management Service.

4. Preparing deployment path. After the initial registration, the infrastructure is
ready to accept deployment requests. First, a deployment specification for an ap-
plication path is submitted for preparation to the Replication Management Service.
This service performs initial validation and passes the deployment specification to
the Replica Configuration Service. The Replica Configuration Service, in turn at-
tempts resolution of application component dependencies on system components
and recursively, dependencies of newly discovered system components on other
system components. If all component dependencies successfully resolve, the Con-
figuration Service then configures each component replica. During configuration,
the Configuration Service attempts to match any previously deployed replicas to
replicas in the new path based on their configurations. All new replica deployment
configurations are then persistently stored and any matched replicas that exist in
other deployments are reused. This last step is called committing the prepared path.

5. Deployment of prepared path. If the path preparation and committing steps suc-
ceed, the infrastructure client can subsequently request deployment of the prepared
path. Upon a deployment request from the user, the Replica Deployment Service
issues deployment requests to appropriate agents on nodes involved in providing
services for this path (step 5a). These agents, in turn, request deployable bundles
of component replicas scheduled for deployment from a Deployment Unit Factory
Service, located on a nearby node (step 5b). For each requested component replica’s
deployment bundle, the Deployment Unit Factory service locates the corresponding

24 A. Akkerman, A. Totok, and V. Karamcheti

replica configuration in persistent storage and generates a properly configured de-
ployment bundle (step 5c). This bundle is then shipped to the requesting agent. The
agent, upon receiving all deployable bundles for components and services sched-
uled for deployment on its node, deploys them in an order that respects deployment
dependencies.

6. Management of deployed paths. The infrastructure maintains a registry of pre-
pared paths, deployed paths and current state of application and system component
replica deployments. Clients may request undeployment of previously deployed
paths which will result in undeployment of component replicas that are exclusively
used by the undeployed path.

4 Infrastructure Internals
In this section we describe in greater detail particularily important and interesting inter-
nal mechanisms of the infrastructure.

4.1 Component Description Language

The primary goal of the Component Description Language is to describe components
and links between them. The components and links are grouped into applications. An
application defines a namespace for components and links that it contains.

Ports. The most significant difference between the application components and system
components is that application components declare ports, while system components
do not. Ports of application components fall into two categories: required or provided.
Declaration of a required port in a component description means that this component re-
quires communication with another component. A declaration of a provided port means
that the component can accept communication from another component (which in turn
must have a matching required port). A port must declare a type (the port type) and a
link type, these are used to check for semantic consistency of an assembly.

Port Type. Port type is a one of two mechanisms for assuring semantic consistency
of component assembly. One can think of port types as interfaces to the component
functionality. Port types are used in typechecking deployment specifications, so that a
required port and a provided port can be connected to each other only of their types
match. The infrastructure may use a pluggable type system and each application may
define its own custom type system. The minimal requirements on a typesystem are that
it implements checks for subtypes and exposes proper typesystem interfaces defined by
the infrastructure.

<component name="ItemEJB">
<provides>

<port name="InvocationPort" type="Item"
link-type="jboss.system.EJBLink">

<property name="EJBObjectJNDI">Item-${systemId}</property>
</port>

</provides>
</component>

Fig. 2. Example of a component specification written in the Component Description Language

Infrastructure for Automatic Dynamic Deployment of J2EE Applications 25

Port Link Type. Link types specify what link may connect this port to another port. It
is the second mechanism for assuring semantic consistency of a component assembly.
The intuitive understanding of a link type is of a communication protocol through which
functionality of a component may be accessed. A port link type’s value must be a name
of a well-defined link, known to the infrastructure. Typically there are only a few link
types defined by an application server provider, corresponding to the three basic remote
connectivity options available to components (see section 2.1). Fig. 2 shows the usage
of the Port, Port Type, and Port Link Type declarations.

Property Declaration Mechanism. This feature of the Component Description Lan-
guage allows definition of adjustable component replica deployment configurations and
at the same time expression of component dependency on system components.

Properties can be defined for components (application and system), ports and links.
All application components implicitly define the systemId property. Property values
are strings, they can be a constant string or a property value expression which evaluates
to a string. Constant property values are simplest to understand, they remain constant
for all replicas of the given component.

The same way that an application acts as a namespace for its components, com-
ponents themselves act as namespaces for properties and ports, and ports act as
namespaces for properties only. The values of properties are computed for each com-
ponent replica and stored in a replica configuration during path preparation. More pre-
cisely, a configuration is a container for resolved property-value pairs from the corre-
sponding property scope. Configurations corresponding to component-wide scope and
port scope are linked in a parent-child relationship for the purpose of property value
query delegation. The delegation is from child to parent and is very similar to stan-
dard programming languages that allow nested scopes, where variables declared in the
outer scopes are visible in the inner scopes. For example, in case of the ItemEJB com-
ponent (Fig. 2), a lookup of the systemId property against the configuration of the
InvocationPort port would succeed because it will be delegated to the component-
wide scope, where the systemId property is declared and stored.

A component replica’s configuration (with nested subconfigurations for its ports),
filled with resolved property values, completely defines this replica’s deployment con-
figuration. This configuration is subsequently used by the infrastructure to configure
this replica’s deployment descriptors.

Property Value Expression Language. The expression language for property values
allows for concatenation of constant strings with values of other properties (of the same

<CompositeExpression> ::= <SubExpression> |
<CompositeExpression><SubExpression>

<SubExpression> ::= <string> |
${<CompositeExpression>}|
${<CompositeExpression>@<Namespace>}

<Namespace> ::= <string>

Fig. 3. Backus-Naur definition of the property value expression language

26 A. Akkerman, A. Totok, and V. Karamcheti

<component name="ItemInvalidationTopic">
<provides>

<port name="DestinationPort"
type="ItemInvalidationTopic"
link-type="jboss.system.jbossmq.DestinationLink">

<property name="DestManagerObjName">
${DestManagerMBeanName@jboss.system.jbossmq.Service}

</property>
</port>

</provides>
</component>

Fig. 4. Example of a specification of component dependency on a system component

component replica or other components and links). Backus-Naur definition of the ex-
pression language is shown in Fig. 3. The ${...} operator is a value of operator,
which performs value lookup of a named property that is specified inside the braces.
The full name of a property has the form of <name>@<namespace>, where the @
symbol separates the property name from the namespace in which the property is to be
looked up. For example, EJBObjectJNDI@OnlineStore.ItemEJB.Invoca-
tionPort is the full name of a EJBObjectJNDI property declared in the Invoca-
tionPort subscope of the ItemEJB component of the OnlineStore application.
Alternatively, the namespace may be omitted, then the lookup will be done in the same
namespace that contains the property whose expression is being evaluated.

Component Dependency Specification Through Property Value Expressions. As
we have already described, the value of a property may depend on values of prop-
erties from other namespaces. External references to properties in namespaces other
than the component’s own, is the mechanism by which a component expresses depen-
dency on a system component. The descriptor snippet in Fig. 4 contains a declaration
of property DestManagerObjName in the scope of the DestinationPort port.
The expression value for this property is a lookup of another property value, namely
DestManagerMBeanName@jboss.system.jbossmq.Service. In this case,
the referred namespace, jboss.system.jbossmq.Service, is in fact a name
of a system component. This reference means that the ItemInvalidationTopic
requires a replica of jboss.system.jbossmq.Service component running on
the same node and it must be fully configured before we can properly configure the
ItemInvalidationTopic component replica.

Propagation of Property Values. Imagine a situation where a component (Catalog-
EJB, in our example) has a required port that points to another component (ItemEJB).
A link of type jboss.system.EJBLink (corresponding to the synchronous EJB
invocation) connects these components. In order to properly connect to the ItemEJB
component, the CatalogEJB component needs to know the value of some proper-
ties from the ItemEJB component’s namespace, for example the JNDI name of the
ItemEJB’s Home Object.

We solve this problem by propagating property values between components,
through properties of the link connecting the components. The ItemEJB compo-
nent specifies an EJBObjectJNDI property of its provided port (Fig. 2). The link

Infrastructure for Automatic Dynamic Deployment of J2EE Applications 27

type jboss.system.EJBLink has a property EJBObjectJNDI, which, in the
example below, evaluates in the context of the target port, that is, the provided port of
the ItemEJB component:

<link type="jboss.system.EJBLink">
<property name="EJBObjectJNDI">${EJBObjectJNDI@ targetPort}</property>

</link>

Now when the property value has been propagated to the link namespace, the last
step in the chain is achieved by the following rule: if the property whose value is being
evaluated is declared in the scope of a required port, and if the external namespace
matches the link type of the port, it is then a reference to the link property:

<component name="CatalogEJB">
<requires>
<port name="PortToItem" type="Item" link-type="jboss.system.EJBLink">

<property name="EJBObjectJNDI">
${EJBObjectJNDI@jboss.system.EJBLink}

</property>
</port>

</requires>
</component>

Primary Component Properties. Sometimes a component’s semantic role in the ap-
plication may depend not only on components it references but on references to entities
not modeled as components by the infrastructure. For example, a data source applica-
tion component has no required ports, however, it has properties that define database
connection parameters that this data source uses to connect to the external RDBMS.
In order to handle such cases, we introduce the notion of primary component proper-
ties. Primary properties are usually the properties that need to be explicitly specified by
the application deployer, such as the database host name for a data source application
component.

4.2 Component Replica Assembly Language

The Component (Replica) Assembly Language is used for writing a deployment (path)
specification. This relatively straightforward language (see Fig. 5) allows to request that
a replica of a given component be deployed on a particular node and specify how its

<deployment-path path-id="...">
<component-replica replicaId="93" name="CatalogEJB" targetId="hostB">

<port-configuration name="PortToItem" .../>
</component-replica>
<component-replica replicaId="57" name="ItemEJB" targetId="hostA">

<port-configuration name="InvocationPort" .../>
</component-replica>
<link-replica replicaId="152" link-type="jboss.system.EJBLink"

sourceEndpoint id="93"
sourceEndpoint portId="PortToItem"
destEndpoint id="57"
destEndpoint portId="InvocationPort"/>

</deployment-path>

Fig. 5. Component Replica Assembly Language code snippet for a 2-component path

28 A. Akkerman, A. Totok, and V. Karamcheti

ports are connected to ports of replicas of other components within the deployment
specification. Only application components can be assembled using the assembly lan-
guage. This design choice is intentional in order to allow the application path planner
to focus only on application aspects of the path without worrying about system com-
ponents needed to support correctness of the application components’ operation. It is
the role of the infrastructure to resolve dependencies of the application components
on system components, and subsequently to configure and deploy the required system
components.

4.3 Component Configuration Process

A deployment specification for an application path is a directed acyclic graph of replicas
of components connected via links from required to provided ports.3

The component configuration process (preparing a deployment path) is a leaf-to-
root, post-order processing of the DAG. Leaf replicas are ones that have no required
ports and thus have no outgoing links. However, they may depend on system compo-
nents through the property value expression mechanism (Section 4.1). So the algorithm
in turn attempts resolution of application component dependencies on system compo-
nents and recursively, dependencies of newly discovered system components on other
system components. It then proceeds in the direction opposite to link direction. In this
way, necessary property values are propagated from a component scope to the scope of
its provided port, then to the link, then to the required ports of the connected compo-
nents, according to the property value propagation mechanism (Section 4.1).

A replica in the graph is processed only after all component replicas that it connects
to via its required ports are already processed. When configuring a replica, the following
order of property resolution within component scopes is adopted: (1) component-wide
scope, (2) provided ports, (3) required ports. This means that component-wide scope
will be filled with resolved property-value pairs first, and only after that all properties
for all provided and required ports are resolved. The order was chosen so that ports’
properties may rely on component-wide properties being configured, so as to use their
property values.

Component Reuse. A component’s replica on a given node can be safely reused by
multiple deployment paths if the same sequence of communications with the replica
will result in the same application state. Replica reuse is an obvious optimization that
allows for decreased deployment overheads and consistency management. Such reuse
is permitted because in the J2EE component model, a component is unaware of any
components that require it. Moreover, in J2EE, any references to other components
required by a given component must be set at this component’s deployment time, so
a component is configurable only at deployment time. The infrastructure adopts the
following component reuse algorithm, which is performed as a part of the preparing of
an application deployment path, after component dependencies have been resolved and
all components’ properties have been evaluated:

3 The acyclicity of the component graph is a simplifying assumption used in the current version
of the algorithm. We believe the algorithm can be extended to allow cycles.

Infrastructure for Automatic Dynamic Deployment of J2EE Applications 29

Component replica R1 of component C deployed on node N can be reused in
place of component replica R2 of C on node N only if primary property values
of these replicas are the same and subgraph of R1’s referenced component
replicas can be reused in place of R2’s corresponding subgraph.

5 Implementation

We have implemented the infrastructure as a part of the JBoss open source Java appli-
cation server [5], utilizing its extensible micro-kernel architecture, based on the JMX
specification.

All infrastructure nodes run an instance of the JBoss application server. These
JBoss instances are configured to start a custom Agent MBean, which serves as the
infrastructure-controlled Agent Service (Section 3, see also Fig. 1). The Agent MBean
plugs into the JBoss deployment mechanism.

One master node runs a JBoss instance with the XmlBlaster Service, which acts as a
persistence back-end, to store the information of prepared application paths, deployed
paths and current state of application and system component replica deployments. Xml-
Blaster [12] is a Publish/Subscribe and Point-To-Point (PTP) Message-Oriented mid-
dleware (MOM) server, which exchanges messages between publishers and subscribers.
Messages are described with XML-encoded meta information. A lot of features are sup-
ported, among them is a persistence support for messages. It is also equipped with the
full text search capabilities – subscribers can use regular expressions to filter the mes-
sages they wish to receive. Our persistence and inter-node messaging is accomplished
through XmlBlaster.

Any number of infrastructure nodes may serve as hosts to codebase and deployment
generation services. This functionality is encapsulated in a deployable Web application
(J2EE WAR) – Deployer – serving as the Deployment Unit Factory Service. It contains
the codebases of the applications preregistered with the infrastructure, in the JAR for-
mat. An Agent MBean requests the predefined Deployer for the deployable bundles for
components and JBoss services scheduled for deployment on its node. The Deployer
queries the XmlBlaster storage back-end for the replica configurations, produces de-
ployable bundles and returns them back to the Agent, which in turn deploys them on
the node in the order preserving component dependencies.

As a part of the infrastructure, we have also implemented a GUI tool serving as a
Replication Management Service client. With this tool, infrastructure users may:

– compose and edit application deployment path specifications for preregistered ap-
plications, rather than writing them manually using the Component Replica Assem-
bly Language;

– interact with the Replication Management Service for preparing, committing, de-
ploying and removing application deployment paths.

The Replication Management Service should run as a JBoss service or as a stand-alone
application. In the current implementation, it runs as an application bundled with the
GUI tool, with the Java Event Notification as the messaging mechanism between them.
However, their codebases are decoupled and all necessary support for other pluggable

30 A. Akkerman, A. Totok, and V. Karamcheti

(remote) communication mechanisms is available. Our future plans include implemen-
tation of a JMX-based communication mechanisms between the Replication Manage-
ment Service and its clients (e.g., the GUI tool). Additional details of the implemen-
tation can be found in the documentation and by inspecting the source code of the
infrastructure, which is available publicly from http://www.cs.nyu.edu/pdsg
(follow the Software tab).

6 Infrastructure Usage Experience

The infrastructure was tested on several sample J2EE applications at hand – Java Pet-
Store [6], RUBiS [7] and TPC-W-NYU [8] – to produce several multi-host distributed
deployments of these applications. The code of Java PetStore and RUBiS was aug-
mented with the design patterns, which were proposed in [1] for enabling efficient dis-
tribution of component-based applications. This also gave us an opportunity to test the
infrastructure’s configuration capabilities applied to messaging components (the origi-
nal code of all three tested applications did not utilize JMS messaging at all). The in-
frastructure worked correctly and produced valid multi-node deployments of the tested
applications. The preparation work included the writing of the application component
descriptions using the Component Description Language, which was easy to achieve
based on the original J2EE deployment descriptors.

Note that the Replication Management Service and the XmlBlaster persistent stor-
age are centralized services. This fact introduces single points of failure into the system,
and might slow down infrastructure performance in WAN environments. In principle,
these services can be replicated to allow the infrastructure to scale, however, the current
version of the infrastructure has not focused on this issue.

7 Related Work and Discussion

The deployment and dynamic reconfiguration of (distributed) component-based appli-
cations has been the subject of extensive research in the software engineering and dis-
tributed systems communities. Research efforts in this direction can be broadly divided
into two camps. The first [3,13] try to construct a general model for a relatively broad
class of systems, by identifying the required functionality for dynamic reconfiguration,
but rarely provide immediately applicable mechanisms for actual reconfiguration. The
second [18,15,16] provide practical mechanisms for carrying out certain kinds of re-
configurations, but usually assume a specialized system architecture to do so. The work
presented in this paper belongs to the second category.

It has been acknowledged that component dependencies represent an important as-
pect of component-based systems, from the fault-tolerance, management and reconfigu-
ration perspectives. In [13] the authors present a generic model of reifying dependencies
in component systems. They identify two distinct kinds of dependencies: (1) require-
ments for loading a component into the system (called prerequisites), and (2) dynamic
dependencies between loaded components in a running system. Component prerequi-
sites are further subdivided into the three categories: (a) the nature of the hardware
resources the component needs, (b) the capacity of the hardware resources it needs, and

Infrastructure for Automatic Dynamic Deployment of J2EE Applications 31

(c) the software services (such as other components) it requires. With regards to this
generic dependency classification, the J2EE component model we are working with has
only static dependencies (prerequisites of type (c)), which come as a specification of
system and application components that are required for a given component to execute.
J2EE does not allow for dynamic reconfiguration of deployed components, so J2EE de-
ployment descriptors are sufficient for describing static deploy-time dependencies. In
this work we do not address component hardware and QoS requirements at all, partly
because it lies beyond the scope of the J2EE specification.

Augmenting middleware with additional services that simplify the tasks performed
by application developers, deployers and system administrators naturally follows the
spirit of the middleware paradigm. Several previous studies have proposed mechanisms
of dynamic application reconfiguration through component redeployment and imple-
mented them as middleware services. The work in [2,17] proposed active monitoring
and micro-reboots for fast automatic recovery and fault isolation. Authors of [14] advo-
cated the approach of running multiple versions of the component at the same time, to
reliably upgrade the system. The authors of [18] built a middleware service for atomic
redeployment of EJB components across multiple servers. Our work follows this path,
by proposing an infrastructure that facilitates and automates component deployment
in distributed environments. However, this paper is different from the previous work
in component deployment in that it specifically addresses the problem of efficiently
expressing dependencies of portable J2EE application components and connectors on
services provided by the middleware. We are working strictly within the constraints
imposed by the J2EE programming model and do not propose extensions to the J2EE
specification.

The variety of deployed components resulting from the usage of our infrastructure
represents an application-level overlay network of J2EE components analogous to that
of [3], [14], and [1], where several instances of the same component may coexist to-
gether. We believe that J2EE limitations on component lifecycle, concurrency and state
may allow for efficient models of consistency between multiple versions of the same
stateful J2EE component. The proposed infrastructure may form a foundation for a
tool for J2EE component replication, analogous to the replication of CORBA compo-
nents [19]. Replication of J2EE components can be used for different purposes, ranging
from failover and increased availability to differentiation of the service among several
client groups.

Acknowledgments

This research was sponsored by DARPA agreements N66001-00-1-8920 and N66001-
01-1-8929; by NSF grants CAREER:CCR-9876128, CCR-9988176, and CCR-
0312956; and Microsoft. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright annotation thereon.
The views and conclusions contained herein are those of the authors and should not
be interpreted as representing the official policies or endorsements, either expressed or
implied, of DARPA, Rome Labs, SPAWAR SYSCEN, or the U.S. Government.

32 A. Akkerman, A. Totok, and V. Karamcheti

References

1. Llambiri, D., Totok, A., Karamcheti, V.: Efficiently distributing component-based applica-
tions across wide-area environments. In: Proceedings of the International Conference on
Distributed Computing Systems (ICDCS). (2003) 412421

2. Chen, M. et al.: Pinpoint: Problem determination in large, dynamic, Internet services. In:
Proc. of the International Conference on Dependable Systems and Networks. (2002)

3. Arshad, N., Heimbigner, D.,Wolf, A.L.: Deployment and dynamic reconfiguration planning
for distributed software systems. In: Proceedings of the 15th International Conference on
Tools with Artificial Intelligence (ICTAI03). (2003)

4. Kichkaylo, T., Ivan, A., Karamcheti, V.: Constrained component deployment in wide-area
networks using AI planning techniques. In: Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS). (2003)

5. JBoss Group: JBoss Application Server. http://www.jboss.org
6. Sun Microsystems Inc.: Java Pet Store Sample Application. http://java.sun.com/

developer/releases/petstore/
7. ObjectWeb Consortium: RUBiS: Rice University Bidding System. http://rubis.

objectweb.org/
8. TPC-W-NYU: A J2EE implementation of the TPC-W benchmark. http://www.cs.

nyu.edu/ totok/professional/software/tpcw/tpcw.html
9. Sun Microsystems Inc.: Java 2 Enterprise Edition. http://java.sun.com/j2ee/

10. ObjectWeb Consort.: JOnAS Application Server. http://jonas.objectweb.org/
11. Fleury, M., Reverbel, F.: The JBoss extensible server. In: Proceedings of the ACM/

IFIP/USENIX International Middleware Conference. (2003)
12. XmlBlaster Open Source Project: http://www.xmlblaster.org/
13. Kon, F., Campbell, R.H.: Dependence management in component-based distributed systems.

IEEE Concurrency 8 (2000) 26–36
14. Rutherford, M. et al.: Reconfiguration in the Enterprise JavaBean component model. In: Pro-

ceedings of the Working Conference on Component Deployment. (2002) 67–81
15. Batista, T., Rodriguez, N.: Dynamic reconfiguration of component-based applications. In:

Proceedings of the International Symposium on Software Engineering for Parallel and Dis-
tributed Systems. (2000)

16. Magee, J., Tseng, A., Kramer, J.: Composing distributed objects in CORBA. In: Proceedings
of the Third International Symposium on Autonomous Decentralized Systems (ISADS97).
(1997) 257–263

17. Candea, G. et al.: JAGR: An autonomous self-recovering application server. In: Proceedings
of the 5th International Workshop on Active Middleware Services. (2003)

18. Cook, J.E., Dage, J.A.: Highly reliable upgrading of components. In: Proceedings of the 21st
International Conference on Software Engineering (ICSE99). (1999)

19. Marangozova, V., Hagimont, D.: An infrastructure for CORBA component replication. In:
Proceedings of the Working Conference on Component Deployment. (2002) 257–263

Component Deployment Using

a Peer-to-Peer Overlay

Stéphane Frénot and Yvan Royon

INRIA Ares - CITI Lab - INSA Lyon,
Bat. Leonard de Vinci, 69621 Villeurbanne cedex, France

{stephane.frenot, yvan.royon}@insa-lyon.fr

Abstract. The deployment of component-based software applications
usually relies on a centralized repository where the components are
stored. This paper describes a peer-to-peer approach for components
distribution. The software components are distributed among a set of
nodes participating in the execution of services. When a node wants to
install a component which is not present locally, this component is both
searched and installed using a peer-to-peer network. The proposed ar-
chitecture is an underlayer for OSGi application (bundles) deployment
and execution management.1

1 Introduction

The installation of software component-based systems requires an infrastructure
for the search and distribution of these components. Typically, an HTTP or FTP
server hosts these components, and provides an indexation mechanism.

We describe a peer-to-peer (p2p) infrastructure implementation for the
management of “installable” software components. This decentralized and dis-
tributed infrastructure dispatches the installable components, their index mech-
anism and their versioning system over a set of peer network nodes. The expected
benefits are the distribution of storage and bandwidth load, as well as robustness
due to peer-to-peer inherent characteristics.

We propose an application of this approach to the OSGi world, which cur-
rently has no standardized component deployment mechanism.

The OSGi technology is a proposition to standardize the way local services
and peripherals are remotely operated. The OSGi specifications [1] define Java-
like APIs for the execution of applications in a service-oriented programming
way. An OSGi component (the deployment unit) is called a bundle. It is a Java jar
archive, described by a Java manifest file. The OSGi Service Platform manages
the bundles’ life cycles, i.e. their state: stopped, installed, resolved, started.

Deployment within the OSGi context is summarized in section 2, while sec-
tion 3 proposes an approach for deployment management, based on self-organized
peer nodes.

1 This work is partially supported by the IST-6thFP-507295 MUSE Integrated Project.

A. Dearle and S. Eisenbach (Eds.): CD 2005, LNCS 3798, pp. 33–36, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

34 S. Frénot and Y. Royon

2 Deployment in the Context of OSGi Technology

The OSGi specifications do not currently address the deployment issue. Bundles
are retrieved using a provided URI, but no deployment mechanisms are proposed.

We use OSGi platforms with a specific actors model in mind: users own
a single OSGi service platform within their homes. Depending on subscriptions
the users contract, several service providers may want to install bundles on these
unique service gateways.

The only deployment architecture currently available is OBR (Oscar Bundle
Repository), from the Oscar [2] open source implementation of the OSGi speci-
fications. With OBR, an XML descriptor file lists and details all bundles hosted
on a remote repository. The client service gateway retrieves this file and parses it
to mount a memory representation of the bundle it can install. The installation
is performed using HTTP requests with the URIs provided by the descriptor file.

OBR is a centralized repository. It is therefore weak to denial of service at-
tacks, as well as peaks in CPU or bandwidth loads. Also, if the central repository
crashes, a potentially huge number of service gateways have no way to update
their bundle index.

All these problems are addressed by peer-to-peer networks. A peer network
comprised of all these service gateways would be a good way to distribute both
bundles and their index. We cast our choice upon a Pastry [3] network, since it
offers an effective way to locate resources (bundles in our case) among a set of
peer nodes. It also has interesting resource replication features, which make the
whole deployment infrastructure less error-prone.

A second problem we address is the versioning system. With the OSGi spec-
ifications and OBR, bundle version numbers are internal, i.e. they only appear
inside the bundle’s manifest file. This makes it impossible for a lower-layer de-
ployment system to include version management. We propose to include the
version number in the bundle name, and to integrate this information within
the peer-to-peer search mechanism. This enables service gateways for automated
and integrated bundle updates.

3 Implementing a Peer-to-Peer Deployment Network

3.1 OSGi Components Deployment

General Network Architecture. Our p2p deployment infrastructure for
OSGi platforms uses a Pastry network. It is composed of 3 layers. The IP layer
identifies the participating OSGi service platforms. The Pastry layer allocates
each of these platforms a node identifier. The component layer locates OSGi
components on the Pastry peer network.

Diffusion of a Component. Any peer node can share a software component
on the network. To do so, the source node sends a deposit request for the
resource. A root node identifier is computed from the resource hash key, using
a function known to all peer nodes: hash(<bundleName>) ⇒ root node ID.

Component Deployment Using a P2P Overlay 35

The route between the current node diffusing the resource and the root node is
automatically calculated by the network: the component is routed hop by hop
until the node which identifier is the closest to the root node ID is found. This
last node then hosts the component.

This procedure is extended to include version management. In this case, re-
source publication requires 2 steps (see listing ??). Firstly, the node with nodeID
the closest to hash(<bundleName>) hosts the current version number for the
bundle. This is obtained with the 1st call. Secondly, The actual bundle is named
<bundleName>-<version>.jar instead of <bundleName>.jar. Its root node is
the one with nodeID closest to hash(<bundleName>-<version>). The 2nd call
which achieves this.

1 . pub l i sh (hash(<bundleName >) , < vers ion >) ;
2 . pub l i sh (hash(<bundleName> <vers ion >) , bytecode) ;

Listing 1.1. Calls for publishing with version management

Installation of a Component. An OSGi bundle is a Java jar archive.
Its name is its identifier. To install a component, the user types the start
<bundleURI> command. For coherence reasons, the URI we use follow this pat-
tern: p2p://<bundleName>. Hence, typing start p2p://log.jar retrieves the
latest version of the log.jar bundle from the network and installs it locally.

More precisely, the client node requesting the bundle computes a hash key
from the bundle’s name (3rd call, listing ??). This call returns the current version
for this bundle. The second step is call number 4, which returns the actual bundle
in its latest version.

3 . r e t r i e v e (hash(<bundleName >)) ;
4 . r e t r i e v e (hash(<bundleName> <vers ion >)) ;

Listing 1.2. Calls for retrieving a versioned bundle

Node Insertion. A node needs to know one node of the peer network in order
to join the community. Once again, during a node insertion, Pastry’s features
are used: resources are redistributed among the nodes for balance reasons.

3.2 Implementation with FreePastry/Oscar

Our implementation uses the open source Oscar [2] implementation of OSGi
specification, and FreePastry [4] for peer-to-peer distribution. We provide 3 OSGi
bundles.2

2 Available at http://ares.insa-lyon.fr/˜sfrenot/devel/

36 S. Frénot and Y. Royon

The first one (pastryWrapper) is used by the OSGi service platform to declare
itself to the peer network. The bundle manager also uses it to publish or retrieve
bundles.

The second bunlde (p2pHandler) extends bundleRepository from the Oscar
distribution. The usual bundleRepository (OBR, Oscar Bundle Repository) is
the centralized index presented in section 2. We extend this system to integrate
a protocol handler for p2p:// URIs. Thus, if the bundle location follows the
p2p://<bundleName> pattern, nodes using OBR directly search the peer-to-peer
network.

Finally, the third bundle (posgiCommand) provides commands for Oscar’s
shell.

4 Comments and Conclusions

We have developed an infrastructure for deploying and downloading OSGi com-
ponents, called bundles, over a peer-to-peer network. These bundles are down-
loaded from a p2p:// URI, which we implement inside the OSGi service plat-
form.

Future works include testing our implementation wide-scale. We still need to
check Pastry’s behavior within the OSGi context. We plan to run tests within the
MUSE [5] project, which aims to define home connectivity and service delivery
for European citizens.

We would also like to investigate the simultaneous use of several publish/dis-
covery protocols, depending on the context. It would then be possible to use a
broadcast search on the local area network. If no node replies, then the search
is extended to routing mode. This is what Sun’s JXTA framework does. In our
case, this is interesting when deploying applications in computer rooms: remote
downloading is done only once, and the remaining downloads are done locally.

References

1. Open Service Gateway initiative: Osgi specifications. http://www.osgi.org (2002)
2. Hall, R.S.: Oscar: Object service container architecture. http://oscar.objectweb.org

(2004)
3. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing

for large-scale peer-to-peer systems. In: Proceedings of IFIP/ACM Middleware.
(2001) 33–34

4. FreePastry: http://freepastry.rice.edu. Rice University, Houston, Texas (2004)
5. MUSE Project: Ist-507295 fp6. http://www.ist-muse.org/ (2004)

A. Dearle and S. Eisenbach (Eds.): CD 2005, LNCS 3798, pp. 37 – 51, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Methodology for Developing and Deploying
Distributed Applications

Graham N.C. Kirby, Scott M. Walker, Stuart J. Norcross, and Alan Dearle

School of Computer Science, University of St Andrews,
North Haugh, St Andrews, Fife KY16 9SX, Scotland

{graham, scott, stuart, al}@dcs.st-and.ac.uk

Abstract. We describe a methodology for developing and deploying distributed
Java applications using a reflective middleware system called RAFDA. We il-
lustrate the methodology by describing how it has been used to develop a peer-
to-peer infrastructure, and explain the benefits relative to other techniques. The
strengths of the approach are that the application logic can be designed and im-
plemented completely independently of distribution concerns, easing the devel-
opment task, and that this gives great flexibility to alter distribution decisions
late in the development cycle.

1 Introduction

This paper presents a methodology for developing and deploying distributed applica-
tions. This exploits many features of the RAFDA middleware system [1-4], the most
significant of which is its ability to separate distribution concerns completely from the
core application logic. The middleware allows any application object to be made
remotely accessible. This means that any changes to distribution boundaries within
the application do not require re-engineering of the application, making it easier to
change the application’s distribution topology. This separation of concerns simplifies
the software engineering process to the programmer’s advantage both when creating a
new distributed application and when introducing distribution into an existing
application.

In outline, the methodology involves three successive phases:

• The application is designed, implemented and tested without taking any account
of how it will be distributed.

• Various mandatory details of distribution are defined, including how application
objects should be partitioned across the network, which should be remotely acces-
sible, and how they are initially connected.

• Other optional issues may be addressed—or may be ignored—including error
handling of network-related failures, parameter passing semantics, and the inser-
tion of monitoring probes.

Code written during the second and third phases is logically separated from the origi-
nal application code written during the first phase; the original code executes un-
changed, whether locally or distributed. Although the additional effort required to
distribute the application is non-trivial, because the extra code resides in newly

38 G.N.C. Kirby et al.

written classes rather than pervading the application logic, it is relatively straightfor-
ward to write, and to change at any time, including late in the development cycle.

2 Related Work

Industry-standard middleware systems—CORBA [5], Java RMI [6], Microsoft COM
[7], Microsoft .NET remoting [8] and Web Services [9]—are complex, making the
creation of distributed applications difficult and error-prone. Programmers must en-
sure that application classes supporting remote access correctly adhere to the particu-
lar rules of the middleware system in use, for example, extending certain base classes,
implementing certain interfaces or handling distribution-related error conditions.

This affects inheritance relationships between classes and often prevents applica-
tion classes from being remotely accessed if their super-classes do not meet the nec-
essary requirements. At best, this forces an unnatural or inappropriate encoding of
application semantics because super-classes are often required to be accessible re-
motely for the benefit of their sub-classes and, at worst, application classes that ex-
tend pre-compiled classes cannot be made accessible remotely at all.

The above systems all require programmers to follow similar steps in order to cre-
ate the remotely accessible classes. Programmers must specify the interfaces between
distribution boundaries then decide which classes will implement these interfaces.
Thus classes are hard-coded at the source level to support remote accessibility; pro-
grammers must therefore know how the application objects will be distributed at run-
time when defining classes—early in the design cycle.

The difficulties inherent in creating and configuring distributed applications are
addressed by several second-generation middleware systems. These allow program-
mers to employ code transformation techniques to generate the distribution-related
code automatically. J-Orchestra [10] and Pangaea [11] transform non-distributed
applications into distributed versions based on programmer input. They perform static
code analysis and employ tools to help programmers choose suitable partitions. Dis-
tributed versions of applications are automatically generated from the local versions
and so the re-engineering process is simplified, making a trial and error approach to
creating applications more feasible.

ProActive [12] and JavaSymphony [13] allow objects to be exposed to remote ac-
cess dynamically. However, both subtly alter application threading semantics and
force programmers to ensure referential integrity manually through their use of active
objects [14]. This requires programmers to consider both application distribution and
the middleware system’s threading model at class creation time in order to ensure that
thread safety is retained after objects are exposed to remote access or migrated to
other address-spaces.

In all current middleware systems, the parameter-passing semantics employed dur-
ing remote method calls are determined statically, often at design-time. Programmers
cannot take advantage of run-time knowledge or application-specific information to
alter these semantics dynamically. Generally, semantics are based on the remote ac-
cessibility of the application classes [6, 8] or defined in the classes explicitly [5].

 A Methodology for Developing and Deploying Distributed Applications 39

3 The RAFDA Middleware System

By contrast with existing middleware systems, the RAFDA Run-Time [1-4] (RRT)
permits arbitrary application objects to be dynamically exposed for remote access.
Object instances are exposed as Web Services through which remote method invoca-
tions may be made. The RRT has four notable features that differentiate it from other
middleware technologies:

1. The programmer need not decide statically which classes support remote access.
Any object instance from any application, including compiled classes and library
classes, can be deployed as a Web Service without the need to access or alter ap-
plication class source code.

2. The system integrates the notions of Web Services, Grid Services and Distributed
Object Models by providing a remote reference scheme synergistic with standard
Web Services infrastructure, and extending the pass-by-value semantics provided
by Web Services with pass-by-reference semantics. Specific object instances
rather than object classes are exposed as Web Services, further integrating the
Web Service and Distributed Object Models. This contrasts with systems such as
Apache Axis [15] in which classes are deployed as Web Services.

3. Parameter passing mechanisms are flexible and may be controlled dynamically.
Parameters and result values can be passed by-reference or by-value and these
semantics can be decided on a per-call basis.

4. When objects are passed by-reference to remote address-spaces, the system de-
ploys them automatically. Thus an object b that is returned by method m of de-
ployed object a is automatically deployed before method m returns.

Although the RRT is written in Java and is designed to support Java applications, it
does not rely on any features unique to Java.

4 Development and Deployment Methodology

The methodology is designed to support a separation between core application logic
and the details of its distribution. It focuses specifically on the implementation and
testing phases of the software engineering process. The steps involved are as follows:

1. Design and implement the application code, without taking any account of
how it will be distributed.

2. Deploy, test and debug the (currently non-distributed) application within a sin-
gle address-space.

3. Define how the application will be (initially) distributed.
4. Define how the new failure modes introduced by distributing the application

should be handled (optional).
5. Define particular object transmission, caching and exception handling policies

(optional).
6. Deploy, test and debug the application in multiple address-spaces on a single

physical host.
7. Deploy, test and debug the application in a fully distributed setting.
8. Design and deploy probes to monitor the execution of the distributed applica-

tion (optional).

40 G.N.C. Kirby et al.

For simplicity, these steps are described as a linear progression from start to finish. In
practice the developer will often return to previous steps, as is common in many soft-
ware engineering approaches. Indeed, it is a distinct benefit of this methodology that
it is very simple to revisit and alter earlier decisions made regarding distribution pol-
icy. This is possible because the distribution policy and logical code structure are
orthogonal to each other; furthermore the different policies, for example distribution
policy and parameter-passing policies are also orthogonal to each other. In most mid-
dleware systems these orthogonal issues are conflated.

4.1 Implementation of Application Logic

The initial step is to design and implement the application logic, without taking any
account of how the application will be distributed. The entire application at this stage
will run within a single Address Space (AS). Interaction between components of the
application, which may involve remote calls over the network in the final distributed
version, is implemented using standard inter-object method calls.

This allows the developer to concentrate on the core logic, ignoring distribution is-
sues1. In particular, the developer need not:

• (ever) write any networking code
• consider which application objects will communicate with remote objects
• extend or implement any special base classes or interfaces to enable remote

communication

Although this is described as a single step in the methodology, it would typically
represent most of the development effort.

The methodology will be illustrated in the context of developing JChord, an im-
plementation of the Chord peer-to-peer protocol [16]. This employs a global ring
topology to link all participating nodes, with additional inter-peer links to support
resilience and efficient routing. Each node has a unique key; the node keys are used to
order the nodes in the ring. The fundamental operation provided by the peer-to-peer
network is lookup(), which maps a key to the node currently “in charge” of that key.

Although a Chord network may contain a large number of participating nodes, the
intrinsic symmetry of the peer-to-peer model means that the software running on most
of the nodes is identical. In the JChord implementation, four principal node types can
be identified:

• the initial network node
• any other network node
• a diagnostic console node that receives events from network nodes
• a control node that is able to start and stop network nodes

The first and second node types differ only in the way that they are initialised: the
initial node needs no configuration information, whereas all nodes subsequently join-
ing the network must be configured with a reference to a node already in the network.
Fig. 1 shows an (extremely simplified) outline of a class P2PNode that implements a

1 With the exception that all fields in any class that may be accessed remotely must be private.

This is often regarded as good coding practice anyway.

 A Methodology for Developing and Deploying Distributed Applications 41

public class P2PNode {
private final Key key;

 private IP2PNode successor;
 public Key getKey(){…}
 public IP2PNode getSuccessor(){…}
 public void setSuccessor(IP2PNode successor){…}
 public IP2PNode lookup(Key key){…}
 public void route(Key key, Message msg){…}
 public void start(){…}
 public void stop(){…}
 public void setConsole(IConsole console){…}
}

Fig. 1. Outline of peer-to-peer node implementation

public class ConsoleNode {
 public void receiveEvent(Event event){…} }

Fig. 2. Outline of console node implementation

network node. At this stage the focus is on application logic rather than distribution,
so although instances of the class are likely to be remotely accessible, the class does
not implement any special interface or extend any base classes.

The methods respectively: return the key of a node; get and set the successor node
in the ring; lookup the node corresponding to a key; route a message to the node for a
given key; start and stop the node; and set the diagnostic console to which events
should be sent. The interfaces IP2PNode and IConsole are defined in Fig. 5.

Fig. 2 shows the outline of a class ConsoleNode that implements a diagnostic con-
sole. The method receiveEvent allows a diagnostic event to be delivered to it by a
network node.

A class ControlNode defines the control node type; details are omitted here. The
completion of the implementation of these classes concludes the first development
step. At this point it is possible to deploy and test the application in a single AS as
described in step two. In contrast to most common middleware systems, the design
and implementation thus far has not required the developer to consider distribution
boundaries, extend base classes or implement particular interfaces. This eases the
development task and retains flexibility with respect to how the resulting objects will
be distributed.

4.2 Local Deployment and Testing

The next step is to deploy the application in a single AS and design a test suite for the
core application logic, using conventional tools such as JUnit [17]. This may, of
course, be integrated with the previous step for a test-driven development approach.
Tests are run and any defects corrected.

The key point here is that although the entire application runs within a single AS
at this stage, it is the real application code that is executing rather than a simulation.
Few changes will be made to that logic during the later steps that introduce distribu-
tion, giving little scope for the introduction of further programming defects. In
particular, there is no need to transform or translate the original code into a distrib-
uted form.

42 G.N.C. Kirby et al.

Fig. 3. JChord objects running in single AS

Fig. 3 shows a minimal JChord network in a testing configuration within a single
AS. Three peer-to-peer node objects are linked in a ring; each of these refers to a
diagnostic console object; a control node object refers to one of the peer-to-peer
nodes in order to control it.

This configuration is created by a test program that instantiates the five objects and
then establishes the connections among them. Testing checks that the ring is correctly
formed, that lookup() and route() work as expected, that diagnostics are displayed by
the console, etc.

The benefit of the methodology at this testing stage is that the developer can focus
exclusively on verifying the application logic, ignoring issues of distribution.

4.3 Definition of Initial Application Distribution

Once a functional local version of the application has been produced in the previous
steps, the developer defines its distribution. This involves:

• deciding how the application objects should be partitioned across the available
ASs,

• deciding which objects should be made available for remote access (i.e. objects
whose methods can be called by objects in remote ASs), and

• deciding the initial inter-AS object “wiring” (i.e. which pairs of objects located on
different ASs should be connected by references)

These decisions feed into a number of coding activities. First, multiple entry points
must be defined for the application, corresponding to each of the ASs on which part
of the application will run. Thus whereas the initial version of the application may
contain only a single class with a main() method, now a separate class with a main()
is required for each entry point2. Execution of the application via the appropriate entry
point on a particular AS results in instantiation of the appropriate application objects
for that AS3. The partititioning for the JChord application is straightforward: each of
the JChord objects described previously is placed in a separate AS, as illustrated in
Fig. 4.

2 Depending on the symmetry of the application, it is often possible for a particular entry point

class to be used for multiple hosts.
3 Support for remote object instantiation according to specified policies is under development.

 A Methodology for Developing and Deploying Distributed Applications 43

Fig. 4. JChord objects partitioned across ASs

Implementation of this partition involves writing an application entry point (a class
with a main() method) for each of the four distinct node types. In each case the main()
method creates an instance of the corresponding class (P2PNode, ConsoleNode or
ControlNode). Where some configuration of the new object is required—for example,
a P2PNode joining an existing network needs to be given references to an existing
peer-to-peer node and to the console node—the configuration information is passed in
the command line parameters.

Next, for each entry point, additional deployment code must be written to make the
appropriate objects remotely accessible. Typically only a relatively small number of
objects need be made remotely accessible; these will act as entry points. A deployed
object may expose one or more deployment interfaces. Deployment interfaces are
defined using Java classes or interfaces whose methods are structurally compatible
with those defined in the object’s actual class. The class need not have been defined
as extending those classes or implementing those interfaces. This means that an inter-
face through which a deployed object is exposed may be decided after the object
already exists. The RRT provides the following API:

void deploy(Object objectToBeDeployed,

Class interfaceToBeExposed, String deploymentName)

In the JChord application, three logically distinct interfaces can be identified: one ex-
posing peer functionality to other peers, one supporting remote control of a peer from
any other object, and one allowing peers to send events to the console. Fig. 5 shows the
definitions of the corresponding interfaces IP2PNode, IManage and IConsole.

public interface IP2PNode {

 public Key getKey();

 public IP2PNode getSuccessor();

 public void setSuccessor(IP2PNode successor);

 public IP2PNode lookup(Key key);

 public void route(Key key, Message msg); }

public interface IManage {

 public void start();

 public void stop(); }

public interface IConsole {

 public void receiveEvent(Event event); }

Fig. 5. JChord remote interfaces

44 G.N.C. Kirby et al.

Fig. 6. JChord objects deployed for remote access

P2PNode p2pNode = new P2PNode();

// initialisation code omitted for brevity

RAFDARunTime.deploy(p2pNode, IManage.class, "Manage");

RAFDARunTime.deploy(p2pNode, IP2PNode.class, "P2P");

Fig. 7. Code to deploy remote interfaces

As shown in Fig. 6, interfaces IP2PNode and IManage are both exposed by each
peer-to-peer node; IConsole is exposed by the console; while the control node need
not expose any remote interface. It should be emphasised again that the classes
P2PNode and ConsoleNode were not declared as implementing any of these inter-
faces. This means that the decision as to what interfaces are exported can be made
later in the development cycle than the definition of the functionality4.

The code to deploy the appropriate remote interfaces is added to the main() method
in the corresponding application entry point class. This is illustrated in Fig. 7, which
shows the deployment of IP2PNode and IManage interfaces for a new P2PNode.

Finally, wiring code is needed to establish connections between objects on differ-
ent ASs. Each connection consists of a remote reference held by an object, denoting
another object in a remote AS. Since remote references are indistinguishable from
local references, this is sufficient to allow methods on the remote object to be called.
Each remote reference is obtained by a method call to the local middleware infra-
structure, passing it a description of the remote AS identified by IP address and port,
and a name or identifier for the required object. The RRT provides the following API
for this purpose:

Object getObjectByName(SocketAddress rrt, String name)

Further connections can be established dynamically, through a remote method call
returning a reference to another object. Thus the initial wiring code can be fairly
minimal; only one connection into every AS is necessary to give connectivity be-
tween the different parts of the application.

4 It also means that instances of library classes can be made remotely accessible even if the

source code of those classes cannot be modified.

 A Methodology for Developing and Deploying Distributed Applications 45

Fig. 8. Remote connections established between JChord objects

public static void main(String[] args {

 P2PNode p2pNode = new P2PNode(); // As in Fig. 7

 ... // deployment code omitted

 SocketAddress successorAddr = ... // extract from args

 SocketAddress consoleAddr = ... // extract from args

 IP2PNode succ = (IP2PNode)RAFDARunTime.getObjectByName(

 successorAddr, "P2P");

 p2pNode.setSuccessor(succ);

 IConsole cons = (IConsole)RAFDARunTime.getObjectByName(

 consoleAddr, "Console");

 p2pNode.setConsole(cons);

 p2pNode.start();
}

Fig. 9. Setting up inter-AS references in entry point for P2PNode joining ring

Since these distribution policy decisions are specified independently of the main
application logic, they can be altered easily. The partition of objects across ASs can
be changed between successive builds of the application5. Furthermore, the deploy-
ment of objects for remote accessibility, and the inter-AS connections, can be
changed dynamically.

Fig. 8 shows an initial configuration for the JChord application equivalent to that
shown for single AS testing in Fig. 3.

At this point, the necessary application components are extant in the appropriate
ASs and available for remote access, but do not reference each other. The method
getObjectByName(), described above, is used in order to establish remote references
between the components. The only information that is required is the address of the
RRT hosting each remote component, and the logical name. This code is added to
each entry point class, taking details of the required network addresses from the
command line parameters. Fig. 9 sketches the code to set up the references for a new
peer-to-peer node joining the ring, from the node to its successor node and to the
console node. The final start() call starts the node, so that it accepts remote calls and
periodically executes its fault tolerance algorithms (not described here).

5 Support for dynamic object migration is under development.

46 G.N.C. Kirby et al.

For ease of management it may be preferable instead for the network addresses of
the various connection end-points to be specified in a configuration file, copied to all
participating hosts, rather than reading them from the command line.

4.4 Definition of Distribution-Related Error Handling (Optional)

Distributing a hitherto non-distributed application introduces new failure modes: a
method call to a remotely accessible object may now fail due to network or remote
host failures. If the developer wishes to specify in detail how such failures should be
handled, this can be achieved by specifying appropriate exception handlers for remote
method calls.

However, the RRT middleware can handle such errors automatically, in which case
failure of a void remote method call will be invisible to the calling object, while fail-
ure of a remote method call that returns a result will lead to a default value (e.g. null,
0 etc) being returned. This capability is designed to increase distribution flexibility, in
that code calling a method need not differ between local and remote calls. If used,
however, the developer should be aware that remote calls may now return default
values without warning. Automatic handling of distribution-related exceptions is
disabled by default. This facility is especially useful in prototyping where different
topologies can be easily explored without regard to application resilience.

To allow dynamic choice as to whether automatic handling is used, distribution-
related exceptions are unchecked, achieved by sub-classing RuntimeException. The
significance of this is that Java does not enforce the specification of handlers for code
in which such exceptions may occur. Thus the developer has three choices:

• to enable automatic handling via a single API call
• to write no additional code at all
• to specify exception handlers in the normal way

In the first case, no network-related exceptions will be thrown, and default values will
be returned from a remote call. In the second case, exceptions will be thrown and the
calling application will fail. In the final case, exception handlers are written by the
developer to catch network exceptions.

The first option is not appropriate for JChord, since network errors need to be de-
tected and handled explicitly. With the second option, any error arising from network
or remote node failure would throw an unchecked exception, which, not being caught,
would terminate execution of the AS in which it occurred. This is unacceptable in the
JChord application, which is designed to provide fault tolerance. If a peer-to-node is
unable to communicate with its successor, for example, it should initiate action to
locate a new successor.

try {

 IP2PNode nextButOne = successor.getSuccessor();

 ... }

catch (RafdaRuntimeException e) {

 // call to successor failed; initiate recovery actions

 Exception cause = e.getCause();

 ... }

Fig. 10. Handling a distribution-related error

 A Methodology for Developing and Deploying Distributed Applications 47

Fig. 10 shows an example of exception handling code added for a call to getSuc-
cessor() on a peer-to-peer node’s successor, within the definition of the P2PNode
class. Since the successor field holds a remote reference, calls performed on it may
fail. Similar code is added for each remote call. The considerable developer effort
required is the price paid for fault tolerance. Without it, the application would still
function correctly on a reliable network, but would not be able to handle node or
network failure.

4.5 Configuration of Middleware Policies (Optional)

The RRT middleware permits control of the following policies:

• whether parameters and result values for remote method calls should be passed
by-reference or by-value (default: by-reference)

• whether particular fields of objects denoted by remote references should be cached
locally, and if so whether methods of such objects that access cached fields should
be executed locally (default: not)

• whether network-related errors should raise exceptions or be handled automati-
cally (default: raise exceptions)

Default settings for these policies are designed such that the developer may omit this
step and still obtain a functioning distributed application.

By default, all objects passed to and from a remote method call are passed by-
reference. This preserves object identity and involves minimal change in application
semantics between the initial local implementation and the distributed version. How-
ever, where it is known that an object’s state will change infrequently, it may be de-
sirable for it to be passed by-value so that future operations on it may be performed
without the need for a remote call. This may improve efficiency and eliminate poten-
tial network-related errors. When an object is passed by-value, a copy is created in the
receiving AS. The middleware does not currently provide any automatic coherency
control, hence it is the responsibility of the application to maintain coherency of ob-
ject copies in the event of update.

Parameter passing policy is controlled by the sending side. Thus the policy in ef-
fect within a particular AS controls the passing of parameters to remote calls to other
ASs, and the returning of results to remote calls made from other ASs. The policy can
be specified at various levels of granularity as appropriate: for all instances of a given
class, for all parameters of a given method, or for specific method parameters. The
RRT provides the following API for class-level control (others omitted here):

void setClassPolicy(Class c, int policy)

Field caching allows a reference transmitted to a remote AS to include copies of
particular fields of the referenced object. Typically this is used in cases where fields
are not expected to be updated. As with passing by-value, this may improve effi-
ciency and eliminate potential network-related errors. Method caching allows a
method call on a remote object to be evaluated locally, in cases where all the fields
accessed by the method are locally cached. Again, the motivations are efficiency and
fault-tolerance. Setting all fields to be cached would have the same effect as passing

48 G.N.C. Kirby et al.

TransmissionPolicyManager.setClassPolicy(

 Key.class, BY_VALUE, LOW);

// LOW priority allows this to be overridden

// by more specific policies

TransmissionPolicyManager.setClassPolicy(

 Message.class, BY_VALUE, LOW);

Fig. 11. Setting transmission policy for particular classes

TransmissionPolicyManager.setFieldToBeCached(

 P2PNode.class.getField("key"));

TransmissionPolicyManager.setMethodToBeCached(

 P2PNode.class.getMethod("getKey"));

Fig. 12. Setting field and method caching

by-value, thus this mechanism may be viewed as giving finer control than the by-
reference / by-value distinction. The RRT provides the following API:

void setFieldToBeCached(Field field)

void setMethodToBeCached(Method method)

In the JChord implementation, instances of classes Key and Message are candidates for
being transmitted by-value, since they are immutable and likely to be relatively small.
This is specified by further code added to the entry point classes, illustrated in Fig. 11.

The intention here is to set the transmission policy for these classes for the duration
of the application execution. It is also possible to change the policy more dynami-
cally. For example, the route() method might set the policy for Message instances to
BY_VALUE for small messages, and to BY_REF for larger messages [3].

For this application it is also beneficial for each remote reference to a P2PNode to
cache the value of the key field locally, and for calls to the getKey() method to be
evaluated locally. This improves efficiency since keys are accessed frequently. The
code to specify this is shown in Fig. 12.

A further benefit of this caching is that diagnostic code reporting failure of a peer
node is able to access the peer’s key even though the peer is inaccessible. Thus the
exception handling block in Fig. 10 can include:

console.receiveEvent(new Event(

 "successor failed - key: " + successor.getKey()));

4.6 Local Distributed Deployment and Testing

The initial testing of the distributed version of the application can be performed on a
single host, by instantiating multiple ASs locally. Communication between the RRT
instances in the various ASs will take place via the loopback network interface in the
same way as for genuinely distributed ASs. This allows testing of the object partition-
ing, the deployment of selected objects for remote access and the initial inter-AS
object wiring in a reliable context, before the introduction of potential time-outs and
other failures in the fully distributed setting.

Fault tolerance to distribution-related errors can be tested to some extent by killing
various AS processes, producing a similar effect to the abrupt failure of a remote host

 A Methodology for Developing and Deploying Distributed Applications 49

or network connection in a genuinely distributed deployment. Since such errors are
always possible, the developer should verify at this stage that the parts of the applica-
tion on the surviving ASs handle such events in an acceptable way. The RRT also
allows the developer to specify the class of Socket used for inter-RRT communica-
tion, allowing the use of Socket implementations which emulate connections that are
low bandwidth, high latency, etc.

For repeated testing, it is useful to write scripts containing the Java commands to
instantiate a number of ASs. Each command includes the entry point class for that
AS, and parameters such as descriptions of other ASs (specified by IP address and
port) to be used by the application in performing initial inter-AS object wiring. The
command also specifies a Java classpath that includes the RRT .jar file.

Testing at this stage can be further automated using tools such as JUnit. It then be-
comes necessary to be able to initialise an entire collection of ASs under control of a
running test program. This may be achieved using Java’s Runtime.exec() to create
ASs running within new processes. The test code can then establish inter-AS remote
references to objects in other ASs, and proceed to carry out application tests. The only
difference in the form of these application tests from those performed during single
AS testing is that remote calls are, naturally, restricted to use only the interfaces
through which the remote objects have been deployed.

Section 4.3 described how a separate entry point class can be written for each dis-
tinct variety of node, with a main() that instantiates and configures an instance of the
appropriate class. This approach presents the problem of orchestrating the deployment
and execution of the appropriate entry points on appropriate hosts. To ease this, it
may be preferable to combine the entry points into a single class, which reads details
from a local configuration file as to which variety of node is required. The problem is
then reduced to one of distributing a single application image to all hosts, and tailor-
ing the configuration file appropriately on each.

4.7 Full Distributed Deployment and Testing

The final testing phase involves genuine distribution of the application. This requires
no changes to the code or the tests developed in the previous step, but the deployment
infrastructure must be adapted. Two actions are required: copying of the application
code and the RRT release .jar file onto each host, and execution of the appropriate
application entry point on each host. On a small scale this can be performed manually.
For a more scalable solution these tasks can be automated using a deployment appli-
cation written in Java. This uses an SSH library [18] to establish a secure connection
to each of the remote hosts and create a process that copies the required files and runs
a AS with the appropriate application entry point.

An interactive tool has been developed to support simple launching of a JChord ring with
any number of nodes. Each node runs in a separate AS, created either locally or remotely via
SSH. AS processes can be killed to simulate failure. The tool also provides an API.

4.8 Monitoring (Optional)

It may be useful to monitor the state of a running distributed application, for the pur-
poses of debugging or for gathering ongoing diagnostics. The RRT middleware offers
two approaches:

50 G.N.C. Kirby et al.

• the RRT instance running on a particular host/AS may be queried via a web
browser

• probe objects, tailored to the application, may be dynamically deployed within a
particular AS

Each RRT instance runs a web server, which can be accessed using a conventional
web browser to obtain information about deployed objects. Each deployed object is
listed, showing the deployment interface, service class, service name and a string
representation of the service object6. This interface can be used to verify which ob-
jects have been successfully deployed within a particular AS.

Fig. 13 shows the web interface provided by the instance of the RRT running in a
particular AS. It lists the deployed interfaces, with the corresponding classes and
objects. In this example each interface is accessible both via a logical deployment
name and via a generated unique identifier.

Fig. 13. Web interface for RRT instance

Probe objects to monitor particular aspects of the application’s execution can be
installed and accessed remotely, either by another Java application via the RRT mid-
dleware, or by any Web Services client—by virtue of the fact that the RRT uses Web
Services as its remote invocation mechanism.

Probes may be deployed by the application itself, or installed remotely under ad-
ministrator control. In the latter case, the application must expose an interface that
supports the integration of probes.

5 Conclusions

This paper has presented a methodology for developing and deploying distributed
applications, exploiting many of the features of the RRT middleware. The strengths of
the approach are that the application logic can be designed and implemented com-
pletely independently of distribution concerns, easing the development task, and that

6 Support for automatic generation of WSDL for each deployed object is under development,

as is a facility to allow object method invocation from the web browser.

 A Methodology for Developing and Deploying Distributed Applications 51

this gives great flexibility to alter distribution decisions late in the development cycle.
The RRT middleware is available for download [1].

Plans for further development include support for policy-driven object placement,
support for transparent object migration, a distributed naming service, improved resil-
ience to transient network failures, an improved security model, and improvements in
performance.

Acknowledgements

This work was supported by EPSRC grants GR/R51872 and GR/S44501/01 and by
EC Framework V IST-2001-32360.

References

 1. Dearle A., Kirby G.N.C., Rebón Portillo A.J., Walker S. Reflective Architecture for Dis-
tributed Applications (RAFDA). 2003. http://www-systems.dcs.st-and.ac.uk/rafda/

 2. Rebón Portillo Á.J., Walker S., Kirby G.N.C., Dearle A. A Reflective Approach to Provid-
ing Flexibility in Application Distribution. In: Proc. 2nd International Workshop on Reflec-
tive and Adaptive Middleware, ACM/IFIP/USENIX International Middleware Conference
(Middleware 2003), Rio de Janeiro, Brazil, 2003, pp 95-99

 3. Dearle A., Walker S., Norcross S., Kirby G.N.C., McCarthy A. RAFDA: Middleware
Supporting the Separation of Application Logic from Distribution Policy. University of St
Andrews Report CS/05/3, 2005.

 4. Walker S.M. RAFDA Run-Time (RRT) Beginner’s Guide v1.0. University of St Andrews
Report CS/05/4, 2005.

 5. OMG. Common Object Request Broker Architecture: Core Specification, 2004
 6. Sun Microsystems. Java™ Remote Method Invocation Specification, 1996
 7. Microsoft Corporation. The Component Object Model Specification. 1995.
 8. Obermeyer P., Hawkins J. Microsoft.NET Remoting: A Technical Overview. Microsoft

Corporation, 2001.
 9. W3C. Web Services Architecture. 2004. http://w3c.org/2002/ws/
10. Tilevich E., Smaragdakis Y. J-Orchestra: Automatic Java Application Partitioning. In:

Proc. European Conference on Object-Oriented Programming (ECOOP), Malaga, 2002
11. Spiegel A. Automatic Distribution of Object-Oriented Programs. PhD thesis, 2002
12. Caromel D., Klauser W., Vayssiere J. Towards Seamless Computing and Metacomputing

in Java. Concurrency Practice and Experience 1998; 10,11-13:1043-1061
13. Fahringer T., Jugravu A. JavaSymphony: A New Programming Paradigm to Control and to

Synchronize Locality, Parallelism, and Load Balancing for Parallel and Distributed Com-
puting. Concurrency and Computation: Practice and Experience 2002; 17,7-8:1005-1025

14. Lavender R.G., Schmidt D. Active Object - An Object Behavioral Pattern for Concurrent
Programming. In: J. Vlissides, J. Coplien and N. Kerth (ed) Pattern Languages of Program
Design 2. Addison-Wesley, 1996

15. Apache Axis. 2004. http://ws.apache.org/axis/
16. Stoica I., Morris R., Karger D., Kaashoek F., Balakrishnan H. Chord: A Scalable Peer-To-

Peer Lookup Service for Internet Applications. In: Proc. ACM SIGCOMM 2001, San
Diego, CA, USA, 2001, pp 149-160

17. JUnit, Testing Resources for Extreme Programming. 2005. http://www.junit.org
18. AppGate Network Security. MindTerm. 2005. http://www.appgate.com/products/

80_MindTerm/

A. Dearle and S. Eisenbach (Eds.): CD 2005, LNCS 3798, pp. 52 – 66, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Crosslets: Self-managing Application Deployment
in a Cross-Platform Operating Environment

Stefan Paal 1, Reiner Kammüller 2, and Bernd Freisleben 3

1 Fraunhofer Institute for Media Communication,
Schloss Birlinghoven, D-53754 St. Augustin, Germany

stefan.paal@imk.fraunhofer.de
2 Department of Electrical Engineering and Computer Science, University of Siegen,

Hölderlinstr. 3, D-57068 Siegen, Germany
kammueller@pd.et-inf.uni-siegen.de

3 Department of Mathematics and Computer Science, University of Marburg,
Hans-Meerwein-Strasse, D-35032 Marburg, Germany
freisleb@informatik.uni-marburg.de

Abstract. The Sun Java Runtime Environment (JRE) is used for developing
applications which can be run in a cross-platform operating environment. The
underlying Java Virtual Machine (JVM) facilitates the execution of Java appli-
cations, but it still requires manual application deployment. There are various
approaches, such as the Java Network Launch Protocol (JNLP), which address
dynamic application deployment, but are limited in scope. In this paper, we pre-
sent a new approach towards self-managing application deployment in a cross-
platform operating environment. It is based on the idea of dynamically deduc-
ing an appropriate deployment process without user intervention. We present a
self-descriptive deployment unit called crosslet and introduce crossware ar-
chives (XAR) to package and distribute it. The Java realization of the approach
is described and its application for nomadic desktop computing is illustrated.

1 Introduction

The Sun Java Runtime Environment (JRE) is available for a variety of hardware plat-
forms and operating systems. It is often used for developing applications which are
supposed to be run in a heterogeneous environment, such as the Internet [1]. A pre-
requisite is the installation of a suitable variant of the Java Virtual Machine (JVM),
which is typically performed by an administrator for each individual computing sys-
tem. While the JVM facilitates the development and execution of applications follow-
ing the Write-Once-Run-Anywhere (WORA) principle, it leaves a basic problem up to
the user: How are Java applications deployed on a computing system if they are not
known by the time the JRE is installed? This leads to further issues, e.g. code distribu-
tion, module composition and runtime configuration, which are not directly addressed
by the JRE. Certainly, there are various approaches, such as Java Web Archives
(WAR) and Java Enterprise Archives (EAR) which address selected problems, e.g.
code distribution and application configuration. However, an administrator has to
manually install and update related applications, e.g. from a CDROM or a remote
software repository, as shown in fig. 1.

 Crosslets: Self-managing Application Deployment 53

Fig. 1. Manual Application Deployment in a Cross-Platform Operating Environment

However, manual application deployment is not well-suited for a large-scale envi-
ronment with a large variety of applications. A remedy is dynamic application de-
ployment offered by approaches like Sun Java Web Start. Instead of installing the ap-
plications on each node, they are deployed into particular application repositories.
From there, the required application components are dynamically retrieved and in-
stalled when an application is requested. Updated components are automatically
downloaded each time the application is started, which keeps the local installation up-
to-date without user intervention. Although approaches using particular deployment
descriptions, e.g. based on the Java Network Launch Protocol (JNLP), release the
administrator from maintaining the application deployment process, they are typically
limited to a deployment-per-application level. Common components are not shared
but individually downloaded for each application. There is no support for multiple
code repositories, and dynamic composition requests are not addressed. In addition,
the deployment process typically cannot be modified by the application, by the run-
time environment or by the customer, e.g. selecting a different code repository or
choosing a compatible component already downloaded by another application.

In this paper, we present an approach towards self-managing application deploy-
ment in a cross-platform operating environment. We introduce a novel principle
called Deploy-Once-Compose-Anywhere (DOCA) which is based on the separation of
concerns in terms of platform setup, code distribution, module composition and appli-
cation configuration. We present a cross-platform application system and propose the
use of so called crosslets to enable spontaneous application deployment. It adjusts it-
self according to platform capabilities and application requirements. We describe the
realization in Java on top of legacy JVMs and illustrate the use of the approach. Fi-
nally, we demonstrate its application in an ongoing project.

The paper is organized as follows. In section 2, we discuss the goal of self-
managing application deployment, outline the requirements and examine related
work. In section 3, we introduce our approach towards self-managing application de-
ployment, propose the new deployment unit called crosslet and describe the realiza-

54 S. Paal, R. Kammüller, and B. Freisleben

tion in Java using crossware archives (XAR). In section 4, we demonstrate the appli-
cation of the approach for nomadic desktop computing in a cross-platform operating
environment. Finally, section 5 concludes the paper and outlines areas for future
work.

2 Self-managing Application Deployment

In this section, we discuss the overall goal of self-managing application deployment.
We outline the requirements with respect to the use in a cross-platform operating en-
vironment and examine related work.

2.1 Goal

In our understanding, application deployment encompasses the entire process from
the development of an application up to its execution in a suitable runtime environ-
ment on a customer computing system. At the first look, an application is composed
of smaller parts, e.g. libraries, modules and components which may be distributed by
developers in separate packages or within a common deployment unit. In turn, each
customer computing system is set up by administrators with an appropriate JVM and
configured according to the specific environment, e.g. passing the address of the
proxy server a JVM has to use. When an application should be run, the required ap-
plication components are retrieved and a suitable runtime environment is provided to
run the corresponding application components.

From this point of view, the deployment process in a cross-platform operating en-
vironment is basically influenced by two distinct factors, the platform and the applica-
tion configuration, as shown in fig. 2.

Fig. 2. Self-Managing Application Deployment in a Cross-Platform Operating Environment

 Crosslets: Self-managing Application Deployment 55

The developers supply the application components and put them in distributed
code repositories. The administrators set up the computing system supposed to run the
application. Both developers and administrators perform their tasks without consider-
ing each others’ configuration. Concerning self-managing application deployment, the
overall goal is the dynamic evaluation of the platform configuration and the applica-
tion configuration and the subsequent deduction of an appropriate deployment process
without user intervention.

2.2 Requirements

Comparable Deployment Units. The distribution of application code is the first step
in the deployment process. An essential requirement is the introduction of comparable
deployment units which may be concurrently introduced and managed by different
authorities. A self-managing deployment approach should be able to synchronize mul-
tiple code repositories and to identify compatible variants, e.g. while evaluating and
updating already downloaded deployment units.

Custom Composition. Applications are typically composed of smaller units, such as
libraries or components, which may be offered in different variants and may be up-
dated individually. A concern is the customizable selection and resolution of required
components according to the requesting application and the current hosting environ-
ment. A self-managing deployment approach queries the code repositories for suitable
components and dynamically selects and retrieves the most appropriate ones.

Seamless Execution. A particular requirement is the provision and configuration of a
suitable runtime environment, e.g. selecting a compatible JVM and passing specific
environment settings such as the address of the proxy server. A self-managing de-
ployment approach should also be able to alter the deployment process without affect-
ing the application execution, e.g. switching from one code repository to another or
selecting a compatible variant already installed on the host computing system.

On-Demand Operation. The heterogeneity of computing nodes found in a cross-
platform operating environment makes it practically impossible to create a one-for-all
solution. An application developer cannot consider every computing system on which
the application will be hosted. In turn, a platform administrator is not able to set up a
runtime environment which is suitable for every application. A self-managing ap-
proach should support on-demand operation without particular user intervention.

Legacy Runtime Environment. In a cross-platform operating environment, it is not
feasible to provide and support proprietary JVM implementations for different types
of operating systems and hardware platforms. The same is valid for custom deploy-
ment approaches which require the manual installation of particular frameworks or
invent particular programming models. A self-managing deployment approach should
rely on a legacy runtime environment and support legacy applications.

2.3 Related Work

There are many Java deployment approaches available which mainly differ in the way
how Java classes are packaged, distributed and retrieved. In the following section, we

56 S. Paal, R. Kammüller, and B. Freisleben

review related work with respect to the discussed concerns and their applicability in a
cross-platform operating environment.

The native Java deployment approaches are basically characterized by using the
Java system class loader. A simple option is to put the Java classes in a directory
structure following the package hierarchy and set the CLASSPATH accordingly. This
approach is suitable for development time but fails to support remote code distribu-
tion. A refinement is the use of a Java archive (JAR) which is built by packaging the
directory structure into a single file [1]. On the one hand, a JAR file can be easily dis-
tributed and used to add extra information about the contained classes, such as version
statements in the manifest file. It is compatible with each legacy JVM and is therefore
well-suited for a cross-platform operating environment. On the other hand, it lacks
support for dynamically configuring the composition, customization and execution.
Once started, the JVM cannot be easily reconfigured to consider additional JAR files
that were not added to the CLASSPATH. The customization of an application is not
possible without modifying the JAR files, and the runtime configuration is not ad-
dressed at all by this approach.

There are framework approaches which emerged from standardized application
scenarios, such as CORBA Components [2] and Java Servlets [3]. They address spe-
cific deployment and composition scenarios which are defined by the framework im-
plementation. For example, web modules are packaged in web archives (WAR) files
which are JAR files containing particular configuration directories and files, such as
Java classes, HTML and XML files. They are supposed to be exclusively used by a
servlet engine for the deployment of Java servlets. The Enterprise Java Beans (EJB)
approach introduces enterprise archives (EAR) which add an additional abstraction
level to group various WAR and JAR files into a single entity [4]. This makes it easy
to reuse components in new J2EE applications and distribute them to another applica-
tion server. Both approaches focus on the support of specific server-side application
scenarios and are not suitable for different kinds of applications, e.g. legacy Java
desktop applications. While a WAR file does not basically differ from a JAR file con-
cerning deployment configuration, an EAR file can be used to configure the composi-
tion, customization and execution of a J2EE application. Though it separates the con-
cerns of application deployment and supports different user roles, such as application
assembly, it is not able to dynamically modify the deployment and composition proc-
ess during runtime. It lacks support for remote code repositories and always bundles
the code along with the configuration files as a single entity.

A dynamic approach is specified by the Java Network Launch Protocol (JNLP)
and used by various implementations for client-side deployment, such as Sun Java
Web Start, Netx [5] and Object Component Desktop [6]. Instead of distributing code
and application configuration as a single unit, a JNLP configuration file is retrieved
from a remote application repository and used to dynamically configure the deploy-
ment process. The approach supports local caching of downloaded JAR files and
checking for updated versions which are transparently downloaded when the applica-
tion is started next time. In addition, it supports the configuration of the application
composition by introducing particular server-side JNLP handlers and the parameteri-
zation of the application execution. The dynamic selection and configuration of a
suitable runtime environment is possible. Although the JNLP approach supports many

 Crosslets: Self-managing Application Deployment 57

issues of dynamic application deployment in a cross-platform operating environment,
it is basically limited to a fixed deployment scenario, e.g. using well-known JNLP re-
positories. The distribution and composition configuration is tightly coupled, and
there is no way to dynamically include or query other code repositories. There is no
support for self-managing customization of the deployment process such as the selec-
tion of the most appropriate component according to application requirements and
platform capabilities.

There are several custom deployment approaches which address different applica-
tion scenarios. Deploy Directory [7] and Power Update [8] are designed to manage
auto-updating of Java clients and use a proprietary deployment protocol. The ap-
proaches are able to customize the deployment process but are not supposed to be
used in different application scenarios. A different deployment approach is introduced
by the OSGi service platform [9] which focuses on the installation and management
of software components. It introduces so called bundles as deployment units and cov-
ers a broad range of use cases, such as service deployment on smart and embedded
devices. It supports the concurrent execution of multiple applications within the same
JVM and addresses the customized sharing of common components. While it is sup-
posed to foster a standardized computing environment for networked services, it relies
on a well-known deployment scenario. Bundles are provided at specific locations and
cannot be dynamically selected and retrieved from concurrent repositories. The ser-
vice composition and dependency resolution is based on Java packages but not on
custom component units.

Another custom deployment approach is represented by SmartFrog [10]. It defines
an application as a collection of possibly distributed components which are automati-
cally deployed and configured. A particular specification language is introduced to
define the lifecycles and dependencies of components and how they should be de-
ployed, run and connected. The major drawback of this approach is the encapsulation
of each instantiated component in a separate process or JVM. A certain middleware
approach, such as RMI, must be used to connect the components. Moreover, there is
no way to share commonly required software libraries which increases the resource
requirements. A further custom approach is Software Dock [11]. It enables coopera-
tive software deployment by introducing particular servers, release dock and field
dock, which represent software producers and software consumers, respectively.
Agents implement the actual software deployment functionality and use the servers to
deploy and to retrieve software systems. While this approach introduces an advanced
software deployment infrastructure, it heavily relies on a well-known deployment
scenario and specific agents to perform certain operations, such as checking for soft-
ware updates. The approach supports the installation and removal of separate software
systems but does not explicitly address custom application composition. A different
approach is SATIN [12] which provides a lightweight component model supposed to
be used in mobile devices. It adapts itself to changing requirements and enables self
organization based on logical mobility and the introduction of Logical Mobile Units
(LMU). An inherent drawback is the compulsory use of the component model which
actually turns this approach unfeasible for the deployment of legacy Java code.

58 S. Paal, R. Kammüller, and B. Freisleben

2.4 Summary

In this section, we have discussed the goal of self-managing application deployment
and have outlined the requirements with respect to cross-platform operating environ-
ments. There are various requirements which have to be addressed by a self-managing
deployment approach. An overall issue is the ability to dynamically modify the de-
ployment process, e.g. selecting another component instead using the one which has
been actually configured by the developer. This raises the general requirement to
separate the concerns, e.g. decoupling code distribution from application composition.

We have examined related work which focuses on different concerns. Native ap-
proaches are commonly used to encapsulate and distribute application classes, such as
Java archives (JAR), but do not support distributed scenarios. Framework approaches
such as Java servlets add particular features but are typically limited to standardized
application scenarios. Dynamic approaches based on JNLP are able to customize the
deployment process but depend on well-known environments. Custom approaches
tend to be specific for a certain application scenario and fail for different ones. They
typically require particular installations, such as the OSGi framework, and lack sup-
port for legacy Java applications, such as SATIN.

To summarize, the basic requirement of self-managing application deployment is
the customizable evaluation of platform configuration and application configuration.
Although there are approaches which support single features required for dynamic
application deployment in a well-known scenario, none of them is currently suitable
for the use in a dynamic and uncertain cross-platform operating environment.

3 Crosslets

In the following, we present our proposal towards a self-managing cross-platform ap-
plication system. We illustrate the conceptual approach of so called crosslets and de-
scribe a realization in Java. The use of crossware archives (XAR) to distribute Java
crosslets is demonstrated.

3.1 Conceptual Approach

The key stone of the conceptual approach is the proposal of a self-descriptive de-
ployment unit called crosslet. It represents a platform-independent configuration of
the deployment process. As shown in fig. 3, a self-managing cross-platform applica-
tion system is introduced which evaluates the crosslet and configures the deployment
process with respect to the platform configuration. The crosslet covers the cross-
platform issues concerning code distribution, module composition and application
configuration, whereas the platform configuration contains the local settings of the
computing system, e.g. platform-specific path to native executables. In this context,
the provided runtime environments are not tightly bound to the application system but
may also be started in a separate process. In general, a crosslet can be used to config-
ure a deployment process. This is possible as long as a suitable platform configuration
can be found, e.g. indicating how to access remote code repositories.

 Crosslets: Self-managing Application Deployment 59

Self-Managing Cross-Platform
Application System

Java Application

Code
Distribution

Module
Composition

Application
Configuration

Platform
ConfigurationCROSSLET

Java Runtime
Environment

configuration

setup

provision execution

Deployment
Configuration

Fig. 3. Conceptual Approach

3.2 Java Realization

While the crosslet approach is basically not limited to Java applications, in the follow-
ing we will focus on self-managing Java application deployment. The presented ap-
proach benefits from our previous work concerning code distribution and module
composition (i.e. Distributed Application Repositories [13] and Java Loadable Mod-
ules [14]). It separates the concerns of distribution, composition and execution of a
Java application, as shown in fig. 4.

Fig. 4. Separation of Concerns

Java Class Repository. The notion of a class repository is used for any source which
provides access to a group of Java classes, such as a JAR file or a network link. In this
context, a basic problem of concurrent code distribution across distributed application
repositories is the lack of determining identical class repositories. A common work-
around is the comparison of file size and date, e.g. used in JNLP. However, this is
only applicable if the class repository is located on the same file system but fails if the
class repository is distributed on different locations. We propose to use a unique iden-

60 S. Paal, R. Kammüller, and B. Freisleben

tifier to determine identical class repositories. When a new Java class repository, e.g.
a JAR file, is uploaded to a remote code repository, an extra configuration is supplied,
as shown in fig. 5.

<repository id="{B8FA2E24-CFFF-49DC-AB4C}">
 <jarfile url="http://crossware.org/editor-1.0.jar"/>
</repository>

Fig. 5. Deployment of a Java Class Repository

The attribute id tags this Java class repository; the id is later used to reference
and identify it. The attribute url denotes the location which may be used by the ap-
plication system to download the JAR file and to put it into the local cache. If a class
repository with the passed id has already been uploaded to the code repository, a
warning is issued and the deployment request is ignored. In turn, if an application sys-
tem determines a copy of the class repository in the local cache, it is not downloaded.

Java Class Collections. The overall goal of class collections is the invention of
virtual class groups which may be created without modifying existing Java class
repositories [15]. Class collections can be marked with certain attributes and support
the concurrent declaration of similar variants. An example of a related configuration
file is shown in fig. 6. It illustrates how the classes from the application editor are
grouped into a new collection and tagged with custom properties.

<collection id="{06FBE205-DF61-40ea-AF12}">
 <variant>
 <property name="name" value="editor"/>
 <property name="release" value="1.0"/>
 <property name="vendor" value="crossware"/>
 <repository id="{B8FA2E24-CFFF-49DC-AB4C}">
 <package name="org/crossware/editor/.*"/>
 </repository>

Fig. 6. Grouping Java Classes using Class Collections

The collection is decorated with the name editor, the release parameter 1.0
and the vendor name crossware. The repository id specifies the class reposi-
tory which actually contains the code. In case only a subset of classes should be con-
sidered, regular expressions can be used to address certain classes. As a result, class
collections can be used to define groups of classes without actually knowing how to
access the classes on the currently employed computing system.

Java Loadable Modules. The particular composition issues are handled by introduc-
ing an abstract deployment and composition unit called module, as detailed in [14]. In
essence, the composition of a Java application is described by specifying the required
modules and their properties like version, vendor or compatibility parameters, as
shown in fig. 7. The module editor is marked with a unique identifier id and defined
to use the class collections editor and xerces with the given properties. The attribute
handler points to a class which represents the module handler of the current module,
e.g. performing the initialization of the module.

 Crosslets: Self-managing Application Deployment 61

<module name="editor" id="{515D0F0D-C215-4f43}"
 handler="org.crossware.editor.CModule">
 <property name="vendor" value="crossware" />
 <property name="release" value="1.0.0" />
 <dependency>
 <module id="{B283663C-C97F-491b-8E03}"/>
 </dependency>
 <collection id="{06FBE205-DF61-40ea-AF12}">
 <property name="name" value="editor" />
 <property name="vendor" value="crossware" />
 <property name="release" value="1.0" />
 </collection>
 <collection id="{945A69A2-ECCA-4da6-97D9}">
 <property name="name" value="xerces" />
 <property name="vendor" value="apache " />
 <property name="release" value="2.4.0" />
 </collection>
</module>

Fig. 7. Module Composition using Class Collections

The module may also define properties like vendor which can be used to query
this module. Finally, the dependency section indicates which modules have to be
loaded before the current module can be used. In contrast to class collections which
are related to code distribution and are not directly accessed by applications, modules
address code composition and may be dynamically requested by applications, e.g. us-
ing the unique module id or querying an appropriate module by its properties.

Java Execution Units. Another issue is the provision and configuration of a suitable
runtime environment for running a Java execution unit. An example of an execution
configuration for a legacy Java application is shown in fig. 8. It requests a runtime
environment denoted by native-java and indicates to start the execution unit at
org.crossware.editor.Main. The parameter args is passed to the application during
startup. The rest of the configuration file may contain additional information about the
application such as its title to be used for display purposes.

A corresponding platform-specific runtime configuration is shown in fig. 9. It is
provided by the platform administrator and configured to meet the capabilities of the
platform installation. It is decorated with various parameters such as native-java
which indicates that this configuration starts a separate Java process using the pa-
rameter command given as /usr/sdk/sun-jdk-1.4.2/bin/java.

<runtime-environment id=”{DBEBA020-89EB-4ca0-B084}”>
 <runtime=”native-java” />
 <main-class=”org.crossware.editor.Main” />
 <args=”col=80,row=50” />
 <title>Editor</title>
</runtime-environment>

Fig. 8. Execution Configuration of a Java Execution Unit

62 S. Paal, R. Kammüller, and B. Freisleben

<application-runtime id=”{A19800A4-5AE7-4f27-B5E8}”>
 <property name=”runtime” value=”native-java” />
 <property name=”type” value=”process” />
 <property name=”version” value=”1.4.2” />
 <property name=”command”
 value=”/usr/sdk/sun-jdk-1.4.2/bin/java” />
</application-runtime>

Fig. 9. Platform-Specific Runtime Configuration

The purpose of the Java execution unit is the encapsulation of the execution con-
figuration of a Java application. It does not refer to any local resource or configuration
but is dynamically evaluated by the self-managing deployment approach along with
the platform-specific runtime configuration. As a result, the configuration of Java exe-
cution units may be dynamically passed to various computing systems in a cross-
platform operating environment and the appropriate runtime environment is dynami-
cally selected and set up.

3.3 Use

After having illustrated the Java realization, we show how the approach is used to de-
fine Java crosslets as self-descriptive deployment units. Basically, we want to reuse
existing deployment approaches and tools. Similar to a WAR file, we introduce a
crossware archive (XAR) which contains the crosslet definition, as shown in fig. 10.

Fig. 10. File Structure of a Crossware Archive (XAR)

The XAR file can be created using the standard JAR tool or any other ZIP compli-
ant compression tool. It contains a particular folder CROSS-INF which in turn may
contain various XML configuration files. They describe the content of the crosslet and
are evaluated during the deployment process. In addition, a XAR file can be used to
group various code packages into a single file and to deploy them at once, e.g. includ-
ing third-party libraries.

 Crosslets: Self-managing Application Deployment 63

The crosslet may be used in different ways. In a simple deployment scenario, the
XAR file consists of code packages and a class repository configuration file only.
There is no definition of class collections or modules. This addresses the need to dis-
tribute shared legacy code packages independent of any application, such as Apache
Xerces. The related code repository can be queried without actually downloading the
XAR files, and an application system may retrieve a missing code package referred
but not included in a different crosslet. Another crosslet may define an execution unit
but without containing any code package. Instead, the application system is free to re-
trieve related module, collection and repository configurations from the local cache or
different code repositories. This supports the reuse of already downloaded software
packages, e.g. using a locally stored Java class collection which is compatible with
the requested one.

The employment of crosslets requires the installation of a particular cross-platform
application system which manages the platform configuration and is able to evaluate
the deployment configuration found in a crosslet. For client-side scenarios, we use an
existing deployment infrastructure based on Sun Java Web Start, as shown in fig. 11.

Fig. 11. Installation of a Cross-Platform Application System

At the initial setup of the system, the user visits a link with a regular Java enabled
Internet browser. This launches a core application system on the client computer and
retrieves further modules from remote code repositories using the presented approach.
Although there are command line tools to interact with the cross-platform application
system, we have spent many efforts to create a graphical user interface which eases
the overall use of the system. The Internet Application Workbench is part of the
CROSSWARE project and aims to provide a pervasive desktop interface in a cross-
platform operating environment [16].

3.4 Discussion

The presented approach enables the self-managing application deployment in a cross-
platform operating environment based on the dynamic evaluation of the application
configuration with respect to the platform setup. Concerning the discussed require-
ments, it supports distributed code repositories, custom composition and seamless
execution. Administrators can prepare the platform setup without actually knowing
which applications will be launched on the computing system. In turn, application

64 S. Paal, R. Kammüller, and B. Freisleben

developers can distribute software packages; define module compositions and runtime
configurations independent of the current deployment scenario and platform setup.
The required cross-platform application system can be dynamically installed by using
a Java-enabled browser and Java Web Start. Another option is the manual installation,
e.g. as part of an application server setup. Legacy Java applications are supported and
related class repositories, such as JAR files, are not modified but wrapped and reused.
A suitable runtime environment is selected and configured on the fly without user in-
tervention. As a result, the presented approach supports the on-demand operation in
an unmanaged and heterogeneous cross-platform operating environment.

Clearly, there are some limitations. The current realization introduces a custom de-
ployment unit which can only be evaluated by our proprietary cross-platform applica-
tion system. Due to the use of custom class loaders, it cannot be easily bundled with
other deployment approaches relying on a particular class loading strategy, such as
used by servlet engines or J2EE application servers. Furthermore, the use of advanced
composition features requires particular knowledge and may require the modification
of the application. Finally, the introduction and dynamic evaluation of XML configu-
ration files decreases the overall performance in a large-scale application scenario.

4 Application of the Approach

In this section, we present an application of the approach for nomadic desktop com-
puting. A nomadic user employs different desktop computing systems while he or she
is on the move from one location to another. In the project CROSSWARE [17], we
work on an autonomic cross-platform operating environment for on-demand Internet
applications. A particular part of this project is the provision of a graphical desktop
interface which seamlessly moves with the nomadic user. The related Java implemen-
tation is called Internet Application Workbench and shown in fig. 12.

Fig. 12. Internet Application Workbench

 Crosslets: Self-managing Application Deployment 65

The workbench is composed of a launch bar to start already installed applications,
a common navigation side bar to explore local and remote repositories and individual
windows for each started application. From this point of view, the workbench mimics
the appearance of well-known graphical operating systems such as MS Windows.
However, the workbench and the related applications are not installed and configured
in advance but dynamically deployed and configured each time the user starts the
workbench. The presented approach of self-managing application deployment is a key
stone for launching the workbench and deploying the applications in a cross-platform
operating environment. It is used to install new and to update already downloaded ap-
plication components without actually knowing the current deployment scenario. The
user selects a XAR file via the file explorer or the Internet browser running in the
workbench and starts the deployment process by a double-click. The configuration
files of the crosslet are evaluated, the crosslet is stored in the local cache and related
code is downloaded, if required. As a result, the workbench may not only be used to
deploy and launch an application on-demand, but also to seamlessly install applica-
tion components in advance, e.g. due to offline operation. A demo version of the
workbench and the presented approach can be retrieved from [16].

5 Conclusions

In this paper, we argue that self-managing application deployment is a prerequisite to
enable the on-demand execution of applications in a cross-platform operating envi-
ronment. We have shown that existing approaches partially address self-managing
application deployment but none of them is currently suitable for the use in a hetero-
geneous and uncertain cross-platform operating environment. An approach towards
self-managing application deployment has been presented which is based on the sepa-
ration of concerns in terms of code distribution, module composition, runtime con-
figuration and platform setup. Based on previous work, such as Java Class Collections
[15] and Distributed Application Repositories [13], it introduces a self-descriptive de-
ployment unit called crosslet which is used to configure the deployment process.
Based on the common JAR file format, it is encapsulated in a crossware archive
(XAR) which can be easily created and evaluated using standard tools. It is used to
bundle related code libraries, component specifications and execution configurations
in a single file, e.g. deploying legacy JAR files and configuring the required runtime
environment. Finally, we have illustrated the application in an ongoing project for the
support of on-demand application execution in a nomadic computing environment.

There are various areas for future research. First, the presented approach relies on
the concurrent use of remote code repositories. A particular concern is security which
has been not yet addressed at all. We currently examine how existing code signing
approaches, such as jarsign, can be transparently applied to a XAR file. This would
smartly ensure the authenticity and the integrity of a crosslet without inventing a pro-
prietary code security framework. A different issue is the extension of the crosslet
format for custom application scenarios, e.g. ad hoc execution migration. We work on
a related implementation which extends the XAR file with migration data. A particu-
lar crosslet is dynamically created and transmitted from one host to another while the
application migrates.

66 S. Paal, R. Kammüller, and B. Freisleben

Acknowledgements

The presented approach is based on a cross-platform operating environment which
has been evaluated and used in various projects, such as CAT [18], AWAKE [19] and
CROSSWARE [16]. They are funded by the German Federal Ministry for Education
and Research and conducted by the research group MARS of the Fraunhofer Institute
for Media Communication, Sankt Augustin in cooperation with the University of
Siegen and the University of Marburg, Germany.

References

1. Venners, B. Inside The Java 2 Virtual Machine. McGraw-Hill 1999.
2. Marvic, R., Merle, P., Geib, J.-M. Towards a Dynamic CORBA Component Platform.

Proc. of 2nd International Symposium on Distributed Objects and Applications (DOA).
Antwerpen, Belgium. pp. 305-314. IEEE 2000.

3. Hunter, J., Crawford, W., Ferguson, P., Java Servlet Programming, O'Reilly 1998.
4. Monson-Haefel, R. Enterprise Java Beans. O'Reilly 2000.
5. Netx. http://jnlp.sourceforge.net/netx/compare.html
6. Object Component Desktop. http://ocd.sourceforge.net/docs/index.html
7. Deploy Directory. http://www.quest.com/deploydirector/
8. PowerUpdate. http://www.zerog.com/products_pu.html
9. OSGi Service Platform Release 3. Open Service Gateway Initiative 2003. http://osgi.org

10. Goldsack, P., Guijarro, J. et al. SmartFrog: Configuration and Automatic Ignition of Dis-
tributed Applications. HP Labs, Bristol, UK. http://www.hpl.hp.com/research/smartfrog/

11. Hall, R. S., Heimbigner, D, Wolf, A. L. A Cooperative Approach to Support Software De-
ployment Using the Software Dock. Proc. of the 21st Intl. Conference on Software Engi-
neering (ICSE 1999). Los Angeles, USA. ACM 1999. pp. 174-183.

12. Zachariadis, S. Mascolo, C., Emmerich W. SATIN: A Component Model for Mobile Self-
Organisation. Proc. of the 5th Intl. Conf. on Distributed Applications (DOA 2004). LNCS
2888. Agia, Napa, Cyprus. pp. 1303-1321.

13. Paal, S., Kammüller, R., Freisleben, B. Dynamic Software Deployment with Distributed
Application Repositories. 14. Fachtagung Kommunikation in Verteilten Systemen (KiVS
2005). Informatik aktuell. Kaiserlautern, Germany. Springer 2005. pp. 41-52.

14. Paal, S., Kammüller, R., Freisleben, B. Separating the Concerns of Distributed Deployment
and Dynamic Composition in Internet Application Systems. Proc. of the 4th Intl. Conf. on
Distributed Applications (DOA 2003). LNCS 2888. Italy. Springer 2003. pp. 1292-1311.

15. Paal, S., Kammüller, R., Freisleben, B. Java Class Deployment with Class Collections.
Proc. 2003 Conf. on Objects, Components, Architectures, Services, and Applications for a
Networked World. LNCS 2591. Erfurt, Germany. Springer 2003. pp. 135-151.

16. CROSSWARE - An Autonomic Cross-Platform Operating Environment for On Demand
Internet Applications. Marburg, Germany. 2005. http://crossware.org

17. Paal, S., Kammüller, R., Freisleben, B. Crossware: Integration Middleware for Autonomic
Cross-Platform Internet Application Environments. International Journal on Computer
Aided Engineering. 2005 (to appear).

18. Fleischmann, M., Strauss, W., Novak, J., Paal, S., Müller, B., Blome, G., Peranovic, P.,
Seibert, C., Schneider, M. netzspannung.org - An Internet Media Lab for Knowledge Dis-
covery in Mixed Realities. In Proc. 1st Conf. on Artistic, Cultural and Scientific Aspects of
Experimental Media Spaces, St. Augustin, Germany. pp. 121-129., 2001.

19. AWAKE - Networked Awareness for Knowledge Discovery. Fraunhofer Institute for Me-
dia Communication. St. Augustin, Germany. 2003. http://awake.imk.fraunhofer.de

DAnCE: A QoS-Enabled Component

Deployment and Configuration Engine�

Gan Deng, Jaiganesh Balasubramanian, William Otte,
Douglas C. Schmidt, and Aniruddha Gokhale

Department of Electrical Engineering and Computer Science,
Vanderbilt University, Nashville,

TN 37203, USA

Abstract. This paper presents two contributions to the study of compo-
nent deployment for distributed real-time and embedded (DRE) systems.
First, it uses an inventory tracking systems (ITS) as a case study to elicit
challenges involved in deploying DRE systems to account for their quality
of service requirements. Second, it describes how we designed and imple-
mented the Deployment And Configuration Engine (DAnCE), which is
QoS-enabled middleware that addresses the challenges that arose in the
context of our ITS case study. Our experience shows that DAnCE pro-
vides an effective platform for deploying DRE system components using
a standard runtime environment and metadata.

1 Introduction

Component middleware platforms are an effective way of achieving systematic
reuse and composition of software artifacts [1]. In these platforms, components
are units of implementation and composition that collaborate with other compo-
nents via ports, including (1) facets, which define interfaces that accept point-to-
point method invocations from other components, (2) receptacles, which indicate
dependencies on point-to-point method interfaces provided by other components,
and (3) event sources/sinks, which enable the exchange of typed messages with
one or more components. Groups of related components can be connected to-
gether via their ports to form component assemblies that can be deployed to
particular nodes in a target domain. Implementations of component assemblies
are bundled into packages that can contain (1) multiple binary executables of the
same component written in different languages and for different OS platforms
and (2) metadata that describes the package contents.

In large-scale distributed real-time and embedded (DRE) systems, such as
shipboard computing environments [2], inventory tracking systems [3], and in-
telligence, surveillance and reconnaissance systems [4], component middleware
features can help make the software more flexible by separating (1) application

� This work is supported in part by funding from DARPA, NSF, LMCO ATC, LMCO
ATL, LMCO Eagan, Raytheon, and Siemens CT.

A. Dearle and S. Eisenbach (Eds.): CD 2005, LNCS 3798, pp. 67–82, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

68 G. Deng et al.

functionality from (2) system lifecycle activities, such as component configura-
tion and deployment. Conventional component middleware platforms, such as
J2EE and .NET, is not well-suited for these types of DRE systems since they do
not provide real-time quality of service (QoS) support. QoS-enabled component
middleware, such as CIAO [5], Qedo [6], and PRiSm [7], have been developed to
address these limitations by combining the flexibility of component middleware
with the predictability of Real-time CORBA.

QoS-enabled component middleware, however, also introduces new complex-
ities that stem from the need to (1) deploy component assemblies into the ap-
propriate DRE system target nodes, (2) activate and deactivate component as-
semblies automatically, (3) initialize and configure component server resources
to enforce end-to-end QoS requirements of component assemblies, and (4) sim-
plify the configuration, deployment, and management of common services used
by applications and middleware. The lack of portable, reusable, and standard
mechanisms to address these challenges is hindering the adoption of component
middleware technologies for DRE systems.

To meet these challenges, we have developed the Deployment and Configu-
ration Engine (DAnCE), which is an open-source (www.dre.vanderbilt.edu/
CIAO) QoS-enabled middleware framework compliant with the OMG Deploy-
ment and Configuration specification [8] that enables the deployment of DRE
system component assemblies by addressing various QoS-related concerns, such
as collocation, memory constraints, and processor loading. The deployment and
configuration of components in DAnCE, therefore, involves mapping known vari-
ations in the application requirements space (such as variations in QoS require-
ments) to known variations in the software solution space (such as configuring
the underlying network, OS, middleware, and application parameters to satisfy
the end-to-end QoS requirements).

The key capabilities provided by DAnCE to support deployment and config-
uration of DRE systems include:

– One-time parsing and storing of component configuration and deployment
descriptions (which are represented as metadata in XML format) so that
runtime parsing overhead is not incurred during component deployment.

– Automatic downloading of component packages so that the implementations
can be changed seamlessly as components migrate from one node to another,
even in a heterogeneous target domains.

– Automatic configuration of object request brokers (ORBs), containers, and
component servers to (1) meet the desired QoS requirements and (2) re-
duce human operator mistakes introduced while configuring middleware and
application components.

– Automatic connection1 of component ports so that developers need not be
concerned with these low-level details.

1 In the context of this paper, a connection refers to the high-level binding between an
object reference and its target component, rather than a lower-level transport (e.g.,
TCP) connection.

DAnCE: A QoS-Enabled Component Deployment 69

– Automatic deployment and lifecycle management of common middleware
services, such as directory, event, security, and load balancing services, so
that developers can concentrate on component business logic, rather than
tedious and error-prone programming activities concerned with managing
these common services.

The remainder of this paper is organized as follows: Section 2 provides an
overview of inventory tracking system (ITS) case study that elicits many chal-
lenges of deploying large-scale DRE systems; Section 3 describes how we designed
and applied DAnCE to resolve key challenges in our ITS case study; Section 4
compares our work with related efforts; and Section 5 presents concluding re-
marks.

2 Deployment and Configuration Challenges in
Component-Based DRE Systems

To illustrate the deployment and configuration challenges in DRE systems, this
section presents a case study of a representative component-based DRE system
called the inventory tracking system (ITS) [3]. An ITS is a warehouse man-
agement infrastructure that monitors and controls the flow of goods and assets
within a storage facility. Users of an ITS include couriers (such as UPS, DHL, and
Fedex), airport baggage handling systems, and retailers (such as Walmart and
Target). This section first provides an overview of the structure/functionality of
our ITS case study and then uses the case study to describe configuration and
deployment challenges.

2.1 Overview of ITS

An ITS provides mechanisms for managing the storage and movement of goods
in a timely and reliable manner. For example, an ITS should enable human op-
erators to maintain the inventory throughout a highly distributed system (which
may span organizational boundaries), and track warehouse assets using decen-
tralized operator consoles. In conjunction with colleagues at Siemens [3], we have
developed the ITS shown in Figure 1 and deployed it using DAnCE.

Figure 1 shows how our ITS consists of the following three subsystems:

– Warehouse management, whose high-level functionality and decision-
making components calculate the destination locations of goods and delegate
the remaining details to other ITS subsystems.

– Material flow control, which handles all the details (such as route cal-
culation and transportation facility reservation) needed to transport goods
to their destinations. The primary task of this subsystem is to execute the
high-level decisions calculated by the warehouse management subsystem.

– Warehouse hardware, which deals with physical devices (such as sensors)
and transportation units (such as conveyor belts, forklifts, and cranes).

70 G. Deng et al.

Fig. 1. Key Components in the ITS Case Study

After the ITS components comprising the ITS subsystems described above
are developed, they must be configured and deployed to meet warehouse oper-
ating requirements. In our ITS case study, ∼200 components must be deployed
into 26 physical nodes in the warehouse. We focus on a portion of this system to
motivate key challenges DAnCE faced when deploying and configuring the ITS.
Figure 2 shows a subset of key component interactions in the ITS case study
shown in Figure 1. As shown in this figure, the WorkflowManager component of
the material flow control subsystem is connected to the conveyor belt and crane
transportation units of the warehouse hardware subsystem. We focus on the sce-
nario where the WorkflowManager contacts the ConveyorBelt and Crane com-
ponents using the move item() operation to move an item from a source (such
as a loading dock) to a destination (such as a warehouse storage location). The
move item() operation takes source and destination locations as its input argu-
ments. When the item is moved to its destination successfully, the ConveyorBelt
and the Crane inform the WorkflowManager via the finish mov() event opera-

Fig. 2. Component Interactions in the ITS Case Study

DAnCE: A QoS-Enabled Component Deployment 71

tion. ConveyorBelt and Crane components are also connected to various Item-
LocationSensor components, which periodically inform the other components
of the location of moving items.

2.2 Challenges in Configuring and Deploying ITS

Using the ITS case study described in Section 2.1, we now illustrate the deploy-
ment and configuration challenges in component-based DRE systems.

Challenge 1: Efficiently storing and retrieving component implemen-
tations. Large-scale DRE systems need capabilities that enable application
developers and deployment runtime tools to (1) upload component implementa-
tions to storage sites and/or (2) fetch component implementations from storage
sites for installation. These capabilities should allow multiple implementations
of a component written in different programming languages and run on different
OS platforms. Moreover, it should be possible to pre-stage component imple-
mentations to avoid downloading selected implementations from central storage
sites during the deployment process.

As shown in Figure 2, it is conceivable that how an ITS ConveyorBelt com-
ponent could have implementations for Linux in Java and Windows in C++,
which will require that these implementations be fetched and deployed appro-
priately on a particular node in a small and bounded amount of time.

Challenge 2: Activation, passivation, and deactivation of component
assemblies. To manage shared resources in a DRE system effectively, compo-
nents in an assembly need to be activated to become functional, passivated when
they will not be accessed for an extended period of time, and deactivated when
they are no longer needed. A key challenge is to coordinate these operations in a
complete assembly, rather than in an individual component or node. For exam-
ple, components in an assembly that collaborate by sending messages or events
must be preactivated to configure the necessary environment and resources so
that messages are exchanged in the intended fashion. In particular, all collabo-
rating components in an assembly must be preactivated before any component
is activated. Similarly, all collaborating components need to be passivated before
any component is deactivated so that no component tries to communicate after
its recipient has been deactivated.

For instance, when the ConveyorBelt component in Figure 2 is being re-
moved, the WorkflowManager component must already be passivated since oth-
erwise it could continue to make move item() invocations on the ConveyorBelt.

Challenge3:ConfiguringNodeApplicationcomponent server resources.
In large-scale DRE systems, QoS requirements (such as low latency and bounded
jitter) are often important considerations during the deployment process since
component (re)deployment may occur throughout the lifecycle of a large-scale
system. To enforce these QoS requirements, component servers and containers
must be configured in accordance with QoS properties, such as those defined

72 G. Deng et al.

in Real-time CORBA [9]. Component deployment and configuration tools must
therefore be able to (1) specify the middleware configurations needed to config-
ure components, containers, and component servers and (2) set the QoS policy
options provided by the underlying middleware into semantically consistent con-
figurations.

For instance, in the ITS case study (Figure 2), whenever a ConveyorBelt
component’s hardware fails, it should notify the WorkflowManager in real-time
to minimize/avoid damage. Likewise, ITS ConveyorBelt and Crane components
may need to be collocated with WorkflowManager in some assemblies to minimize
latency.

Challenge 4: Configuring and deploying common middleware services.
Traditional object-oriented middleware (such as CORBA 2.x) provides DRE sys-
tems with access to common middleware services (such as Naming and Trad-
ing) through the underlying Object Request Broker (ORB) and Portable Object
Adapter (POA). Component-based middleware, such as Lightweight CORBA
Component Model (CCM) [10] enables (1) reusability of components by imple-
menting only application logic and (2) easier integration into different appli-
cations and runtime contexts. Component deployers thus need to support the
integration of common middleware services into component-based applications
for which no standard mechanisms yet exist.

For instance, Figure 2 shows how the ITS ItemLocationSensor and the
ConveyorBelt components exchange messages using event sources/sinks, which
may require the configuration of some middleware publish/subscribe services,
such as the CORBA Real-time Notification Service or the Data Distribution
Service (DDS).

Section 3.2 describes how DAnCE addresses these challenges for DRE sys-
tems and how our solutions have been applied to the ITS case study.

3 The Design of DAnCE

This section describes the Deployment And Configuration Engine (DAnCE),
which is middleware we developed based on the OMG’s Deployment and Con-
figuration (D&C) specification [8]. This specification standardizes many aspects
of configuration and deployment for component-based distributed systems, in-
cluding component configuration, component assembly, component packaging,
package configuration, package deployment, and target domain resource man-
agement. These aspects are handled via a data model and a runtime model. The
data model can be used to define/generate XML schemas for storing and inter-
changing metadata that describes component assemblies and their configuration
and deployment characteristics. The runtime model defines a set of managers
that process the metadata described in the data model during system deploy-
ment. This section shows how the design and implementation of DAnCE has
been tailored to address the D&C challenges of component-based DRE systems
described in Section 2.2.

DAnCE: A QoS-Enabled Component Deployment 73

3.1 The Structure and Functionality of DAnCE

The architecture of the Deployment and Configuration Engine (DAnCE) is
shown in Figure 3. This section describes how DAnCE provides a reusable mid-
dleware framework for deploying and configuring components in a distributed
target environment, using the ITS case study in Section 2.1 to motivate its key
capabilities. DAnCE is built atop The ACE ORB (TAO) [11] and CIAO [5],
which makes it portable to most hardware and OS platforms in use today.

Fig. 3. Overview of DAnCE

As shown in Figure 3, an ITS deployer creates XML descriptors that convey
application deployment and configuration metadata, using external model driven
development (MDD) tools [12]. This metadata is compliant with the data model
defined by the OMG D&C specification. To support additional deployment and
configuration concerns not addressed by this specification, we enhanced the spec-
defined data model by describing additional deployment concerns (such as real-
time QoS requirements and middleware service configuration and deployment)
discussed in Section 3.2.

All the metadata to describe these concerns is captured in an XML file called
the deployment plan, which describes (1) the DRE system component instances
to deploy, (2) what properties of these components should be initialized, (3) what
QoS policies these components must contain, (4) what middleware services the
components use, and (5) how the components are connected to form component
assemblies. The various entities of DAnCE shown in Figure 3 are implemented
as CORBA objects2 that collaborate as follows:
2 The DAnCE deployment infrastructure is implemented as CORBA objects to avoid

the circular dependencies that would ensue if it was implemented as components,
which would have to be deployed by DAnCE itself!

74 G. Deng et al.

ExecutionManager runs as a daemon and is used to manage the deployment
process for one or more domains. In accordance with the D&C specification,
DAnCE defines a domain as a target environment composed of nodes, intercon-
nects, bridges, and resources. An ExecutionManager uses the factory and finder
design patterns to manager a set of DomainApplicationManagers.

DomainApplicationManager manages the deployment of components within
a single domain (to manage multiple domains, an ExecutionManager can coor-
dinate with multiple DomainApplicationManagers). A DomainApplication-
Manager splits a deployment plan into multiple subplans, one for each node in
a domain. In DAnCE, the ExecutionManager and DomainApplicationManager
objects reside in the same daemon process to improve deployment performance
by leveraging the collocation optimizations provided by TAO.

NodeManager runs in a daemon on each node and manages the deployment of
all components that reside on that node, irrespective of which application they
are associated with. Components are created by containers, which are hosted in
component server processes called NodeApplications. The NodeManager creates
the NodeApplicationManager, which in turn creates the NodeApplication pro-
cesses that host containers, thereby enhancing the reuse of components shared
between applications on a node.

NodeApplicationManager is collocated with a NodeManager to manage the
deployment of all components within a NodeApplication which is a server pro-
cess that hosts a group of related components in a particular application. To
differentiate deployments in a node, DAnCE’s DomainApplicationManager uses
the node’s NodeManager to create a NodeApplicationManager for each deploy-
ment and sends it the metadata it needs to deploy components.

NodeApplication plays the role of a component server process that provisions
the computing resources (e.g., CPU, memory and network bandwidth) for the
components it hosts. Based on metadata provided by other DAnCE managers in
the deployment process, the NodeApplication creates the initial containers that
provide an environment for creating and instantiating application components.
Components in a node are thus deployed in one or more NodeApplications in
accordance with a deployment plan.

RepositoryManager runs as a daemon dedicated to a domain and is used
by (1) deployer agents to store component implementations and (2) DAnCE’s
NodeApplicationManager to fetch necessary component implementations on de-
mand. Each NodeApplicationManager uses its RepositoryManager to search
component implementation binaries (stored in the form of dynamic linking li-
braries) and fetches them into the local node’s storage cache.

3.2 Applying DAnCE to Address DRE Systems D&C Challenges

The remainder of this section describes how (1) the DAnCE managers in Figure 3
address key DRE systems D&C challenges described in Section 2.2 and (2) our
solutions are applied to the ITS case study presented in Section 2.1.

DAnCE: A QoS-Enabled Component Deployment 75

Resolving Challenge 1: Storing and Retrieving Component Implemen-
tations Via a Repository Manager. DAnCE’s RepositoryManager provides
efficient mechanisms where applications can (1) store component implementa-
tions at any time during the system lifecycle and (2) retrieve different versions of
implementations as components are (re)deployed on various types of nodes. As
shown in Figure 4, the RepositoryManager can also act as an HTTP client and
download component implementations specified as URLs in a deployment plan.
It caches these implementations in the local host where the RepositoryManager
runs so they can be retrieved by NodeApplicationManagers.

Over a system’s lifetime, a component could be migrated and redeployed
on a node whose type is different than its earlier host(s), in which case a dif-
ferent component implementation must be provided. To support efficient de-
ployment, DAnCE’s NodeApplicationManagers periodically contact the Repo-
sitoryManager to download the latest implementations of designated compo-
nents. When a component is redeployed, therefore, all its implementations can
be cached locally on the target nodes, so downloading overhead need not be
incurred during the deployment process.

DAnCE’s RepositoryManager uses ZIP compression and file archiving mech-
anisms (debin.org/zzip) to provide an efficient representation of the contents of
a ZIP archive and (de)compress all the implementations in a packaged format. It
uses CORBA operation invocations to transfer the ZIP-encoded component as-
sembly packages to the node(s) in a domain that run NodeApplicationManagers.

In the ITS case study, an initial deployment might write the ConveyorBelt
component in Java and host the component on an Embedded Linux node. As
the system runs, ITS developers could create a C++-based Win32 implementa-
tion of ConveyorBelt and submit it to DAnCE’s RepositoryManager. At some
point during the ITS lifecycle, the ConveyorBelt could be stopped at the current
Linux node and moved to a Windows node. To execute that deployment request,
DAnCE’s NodeApplicationManager running on the Windows node could con-
tact the RepositoryManager to retrieve the Windows implementation of the

Fig. 4. Downloading implementations us-
ing the Repository Manager

Fig. 5. Different States of a Component

76 G. Deng et al.

ConveyorBelt component and deploy it. The RepositoryManager thus helps
decouple when and how ITS component implementations are developed from
when they are deployed.

Resolving Challenge 2: Using the DomainApplicationManager to Co-
ordinate the Component Assembly Lifecycle. During the lifecycle of the
component assembly, DAnCE’s DomainApplicationManager maintains preac-
tive, active, passive, and deactivated runtime state information on each
component in the component assembly, as shown in Figure 5. The preactive
state indicates that the component has been created and has been provided its
environment settings. The active state indicates that the component has been
activated with the underlying middleware. The passive state indicates that the
component is idle and all its resources can be used by other components. The de-
activated state means that the component has been deactivated and removed
from the system.

During the deployment process, DAnCE’s DomainApplicationManager en-
sures that components are not connected and activated until all the components
are in the preactive state. Similarly, during assembly deactivation, DAnCE’s
DomainApplicationManager ensures that components in an assembly are deac-
tivated only when all the components are in the passive state.

To ensure that a component’s ongoing invocations are processed completely
before it is passivated, all operation invocations on a component in CIAO are
dispatched by the standard Lightweight CCM Portable Object Adapter (POA),
which maintains a dispatching table that tracks how many requests are being
processed by each component in a thread. CIAO uses standard POA reference
counting and deactivation mechanisms to keep track of the number of clients
making invocations on a component. After a server thread finishes processing
the invocation, it decrements the reference count in the dispatching table. Only
when the count is zero, is the component passivated. CIAO therefore ensures
that the system is always in a consistent state to ensure that no invocations
are lost. To prevent new invocations from arriving at the component while it is
being passivated, the container blocks new invocations for this component in the
server ORB using standard CORBA portable interceptors.

In the ITS case study, DAnCE’s DomainApplicationManager ensures that
the ItemLocationSensor components does not make operation invocations on
the ConveyorBelt components unless both are active. Similarly, during the de-
activation of the ConveyorBelt component, the DomainApplicationManager
ensures that WorkflowManager components are passivated, which ensures that
all move item() requests are handled properly. Finally, the ConveyorBelt com-
ponent’s POA ensures that all requests being processed by the component are
dispatched before deactivating the component.

Resolving Challenge 3: Configuring NodeApplication Component Ser-
ver Resources. To enforce QoS requirements, DAnCE extends the OMG D&C
[8] specification to define NodeApplication server resource configurations, which
heavily influence end-to-end QoS behavior. Figure 6 shows the different cate-

DAnCE: A QoS-Enabled Component Deployment 77

Fig. 6. Specifying RT-QoS requirements Fig. 7. Example Server Resources Specifi-
cation

gories of server configurations that can be specified using the DAnCE server re-
sources XML schema, which are related to system end-to-end QoS enforcement.
In particular, each server resources specification can set the following options:
(1) ORB command-line options, which control TAO’s connection management
models, protocol selection, and optimized request processing, (2) ORB service
configuration option, which specify ORB resource factories that control server
concurrency and demultiplexing models. Using this XML schema, a system de-
ployer can specify the designated ORB configurations.

As described in Section 3.1, components are hosted in containers created
by the NodeApplication process, which provides the run-time environment and
resources for components to execute and communicate with other components
in a component assembly. The ORB configurations defined by the server re-
sources XML schema are used to configure NodeApplication processes that host
components, thereby providing the necessary resources for the components to
operate. Since the deployment plan describes the components and the artifacts
required to deploy the components, DAnCE extends the standard OMG D&C
deployment plan to specify the server resource configuration options.

As shown in Figure 3, XMLConfigurationHandler parses the deployment
plan and stores the information as IDL data structures that can transfer infor-
mation between processes efficiently and enables the rest of DAnCE to avoid the
runtime overhead of parsing XML files repeatedly. The IDL data structure out-
put of the XMLConfigurationHandler is input to the ExecutionManager, which
propagates the information to the DomainApplicationManager and
NodeApplicationManager. The NodeApplicationManager uses the server
resource-related options in the deployment plan to customize the containers in
the NodeApplication it creates. These containers then use other options in
the deployment plan to configure TAO’s Real-time CORBA support, including
thread pool configurations, priority propagation models, and priority-banded
connection models.

78 G. Deng et al.

ITS components, such as ItemLocationSensor and WorkflowManager, have
stringent QoS requirements since they handle real-time item delivery activities.
The server resource configurations for all nodes hosting these components are
specified via an MDD tool. Figure 7 shows an example XML document that
specifies the server resource configurations defined by a system deployer. The
XMLConfigurationHandler parses the descriptors produced the MDD tool to
notify the NodeApplicationManager. To honor all the specified configurations,
the component servers hosting these components are configured with server-
declared priority model with the highest CORBA priority, thread pools with
preset static threads, as well as priority-banded connections.

Resolving Challenge 4: Configuring Common Middleware Services
During the Deployment Process. To support the integration of common
middleware services into component-based applications, DAnCE provides a
meta-programmable service integration framework shown in Figure 8. This figure
shows how DAnCE uses the service integration framework to integrate various
middleware services into a DRE system. At the heart of this service integra-
tion framework is the DAnCE Service Configurator, which is hosted in each
NodeApplication. Common middleware services (such as the Naming Service,
Event Service, and TAO Real-time Event Service) are configured using standard
CORBA interfaces and hence the usage patterns of such middleware services can
be formulated easily. For example, when an application uses TAO’s Real-time
Event Service, it needs to (1) initialize and configure the QoS properties of the
event channel, (2) define the semantic behaviors of event publishers and event
consumers, and (3) register the event publishers and event consumers through
the event channel interfaces.

To configure and deploy middleware services via DAnCE, CIAO encapsulates
these common usage patterns and provides a set of reusable service libraries, one
for each type of middleware service, e.g., we designed CIAO Real-time Event Ser-

Fig. 8. Configuring Common Middleware Services

DAnCE: A QoS-Enabled Component Deployment 79

vice library for the Real-time Event Service provided by TAO. Each library is a
wrapper facade of the middleware service provided by the underlying ORB that
shields component developers from tedious and error-prone programming tasks
associated with initializing and configuring QoS-enabled common middleware
services. These libraries also expose interfaces to the DAnCE Service Configu-
rator to manage the services. For example, the Real-time Event Service Config
shown in the Figure 8 captures the various usage and configuration options
(such as event dispatching threading model, event dispatching priority model
and event filtering model) for the CIAO Real-time Event Service library. Our
DAnCE Service Configurator is designed to support any CORBA service, even
those developed to use the earlier CORBA 2.x object model.

During the deployment process, DAnCE uses the deployment plan to express
service configuration properties associated with components and assemblies that
inform the NodeApplicationManager how to initialize the middleware services
with desired configuration settings. The NodeApplicationManager then conveys
to the NodeApplication which components to create and which middleware
services they require. In response, the NodeApplication triggers the DAnCE
Service Configurator to load and configure the corresponding CIAO middleware
service libraries automatically.

ITS deployment engineers can use MDD tools [13,14] to model the inter-
actions between the ItemLocationSensor and ConveyorBelt components and
could indicate whether a direct connection or an event channel is needed for com-
munication. Moreover, stringent QoS requirements such as timing constraints
and event delivery latency could also be specified in the communication between
the two components. If a direct connection is specified, then at deployment time
DAnCE makes the ItemLocationSensor component with an event source port
cache the object reference of the event sink port of the ConveyorBelt compo-
nent. After the deployment is complete, these two components can communicate
directly through a CORBA remote invocation call. If the DRE system deployer
specifies the use of CIAO Real-time Event Service, then DAnCE service configu-
rator and its metadata-based configuration mechanisms configures and manages
the service and its QoS settings to provide the desired QoS.

4 Related Work

As component middleware becomes more pervasive, there has been an increase
in research on technologies, platforms, and tools for deploying components effec-
tively within distributed systems. This section compares our work on DAnCE
with other related efforts.

The OpenCCM (corbaweb.lifl.fr/OpenCCM/) Distributed Computing In-
frastructure (DCI) federates a set of distributed services to form a unified dis-
tributed deployment domain for CCM applications. DCI, however, implements
the Packaging and Deployment (P&D) model defined in the original CCM speci-
fication, which omits key aspects in the component configuration and deployment
cycle, including package repository management, server real-time QoS configu-

80 G. Deng et al.

ration, and middleware service configuration and deployment. We are currently
working with the OpenCCM team to enhance their DCI so that it is compliant
with the OMG D&C specification and DAnCE.

[15] proposes using an architecture descriptive language (ADL) that allows
assembly-level activation of components and describes assembly hierarchically.
Although DAnCE is similar, it uses the XML descriptors synthesized by MDD
tools to characterize the metadata regarding components to deploy. Likewise,
DAnCE descriptors can specify QoS requirements and/or server resource config-
urations, so its deployment mechanisms are better suited to deploy applications
with desired real-time QoS properties.

[16] proposes the use of the Globus Toolkit to deploy CCM components on
a computational grid. Unlike DAnCE, this approach does not provide model-
driven development (MDD) tools that enable developers to capture various con-
cerns, such as deployment planning and server configuration, visually. Moreover,
DAnCE is targeted at DRE systems with stringent real-time QoS requirements,
rather than grid applications, which do not provide real-time support.

Proactive [17] is a distributed programming model for deploying object-
oriented grid applications. Proactive defines applications as virtual structures
and removes references to the physical machines from the functional code writ-
ten for the applications. The functional code is mapped to the physical machines
using XML descriptors. DAnCE is similar since it also separately describes the
target environment using XML descriptors, but it goes further to specify com-
ponent interdependencies and ensure system consistency at deployment time.
Moreover, Proactive work focuses on deploying Java applications on Java vir-
tual machines, whereas DAnCE implements the OMG D&C specification, which
focuses on deploying DRE systems using language- and platform-independent
component middleware written in different languages and running on different
operating systems.

5 Concluding Remarks

Component middleware is intended to enhance the quality and productivity of
software and software developers by elevating the level of abstraction used to
develop distributed systems. Conventional middleware, however, generally lacks
mechanisms to handle deployment concerns for distributed real-time and embed-
ded (DRE) systems. This paper describes how we addressed these concerns in
the Deployment And Configuration Engine (DAnCE), which is an open-source
implementation of the OMG’s Deployment and Configuration (D&C) specifica-
tion targeted for deploying and configuring DRE systems based on Lightweight
CORBA Component Model (CCM). DAnCE leverages model-driven develop-
ment (MDD) tools and QoS-enabled component middleware features to sup-
port (1) the efficient storage and retrieval of component implementations, (2)
component activation, passivation, and removal semantics within component as-
semblies, (3) configuring QoS-related client/server resources, and (4) integrating
common middleware services into applications.

DAnCE: A QoS-Enabled Component Deployment 81

Our future work on DAnCE will focus on (1) integrating reliable multicast
mechanisms in TAO to the various *Manager objects described in Section 3.1
to improve the scalability and reliability of the deployment process, (2) extend-
ing DAnCE to support dynamic component assembly reconfiguration, redeploy-
ments, and migrations, (3) enhancing DAnCE to provide state synchronization
and component redeployment or recovery support for a fault-tolerant middleware
infrastructure, such as MEAD [18], and (4) applying specialization techniques
(such as partial evaluation and generative programming) to optimize DRE sys-
tems using metadata contained in component assemblies.

References

1. Heineman, G.T., Councill, B.T.: Component-Based Software Engineering: Putting
the Pieces Together. Addison-Wesley, Reading, Massachusetts (2001)

2. Schmidt, D.C., Schantz, R., Masters, M., Cross, J., Sharp, D., DiPalma, L.: To-
wards Adaptive and Re ective Middleware for Network-Centric Combat Systems.
CrossTalk (2001)

3. Nechypurenko, A., Schmidt, D.C., Lu, T., Deng, G., Gokhale, A.: Applying MDA
and Component Middleware to Large-scale Distributed Systems: a Case Study. In:
Proceedings of the 1st European Workshop on Model Driven Architecture with
Emphasis on Industrial Application, Enschede, Netherlands, IST (2004)

4. Sharma, P., Loyall, J., Heineman, G., Schantz, R., Shapiro, R., Duzan, G.:
Component-Based Dynamic QoS Adaptations in Distributed Real-Time and Em-
bedded Systems. In: Proc. of the Intl. Symp. on Dist. Objects and Applications
(DOA’04), Agia Napa, Cyprus (2004)

5. Wang, N., Gill, C., Schmidt, D.C., Subramonian, V.: Configuring Real-time As-
pects in Component Middleware. In: Proc. of the International Symposium on
Distributed Objects and Applications (DOA’04), Agia Napa, Cyprus (2004)

6. Ritter, T., Born, M., Unterschutz, T., Weis, T.: A QoS Metamodel and its Realiza-
tion in a CORBA Component Infrastructure. In: Proceedings of the 36th Hawaii
International Conference on System Sciences, Software Technology Track, Dis-
tributed Object and Component-based Software Systems Minitrack, HICSS 2003,
Honolulu, HW, HICSS (2003)

7. Sharp, D.C., Roll, W.C.: Model-Based Integration of Reusable Component-Based
Avionics System. In: Proc. of the Workshop on Model-Driven Embedded Systems
in RTAS 2003. (2003)

8. Object Management Group: Deployment and Configuration Adopted Submission.
OMG Document ptc/03-07-08 edn. (2003)

9. Object Management Group: Real-time CORBA Specification. OMG Document
formal/02-08-02 edn. (2002)

10. Object Management Group: Light Weight CORBA Component Model Revised
Submission. OMG Document realtime/03-05-05 edn. (2003)

11. Schmidt, D.C., Levine, D.L., Mungee, S.: The Design and Performance of Real-
Time Object Request Brokers. Computer Communications 21 (1998) 294–324

12. Balasubramanian, K., Krishna, A.S., Turkay, E., Balasubramanian, J., Parsons, J.,
Gokhale, A., Schmidt, D.C.: Applying Model-Driven Development to Distributed
Real-time and Embedded Avionics Systems. International Journal of Embedded
Systems special issue on Design and Verification of Real-Time Embedded Software
(2005)

82 G. Deng et al.

13. Balasubramanian, K., Balasubramanian, J., Parsons, J., Gokhale, A., Schmidt,
D.C.: A Platform-Independent Component Modeling Language for Distributed
Real-time and Embedded Systems. In: Proc. of the 11th IEEE Real-Time and
Embedded Technology and Applications Sym., San Francisco, CA (2005)

14. Edwards, G., Deng, G., Schmidt, D.C., Gokhale, A., Natarajan, B.: Model-driven
Configuration and Deployment of Component Middleware Publisher/Subscriber
Services. In: Proceedings of the Third International Conference on Generative Pro-
gramming and Component Engineering (GPCE), Vancouver, CA, ACM (2004)

15. Quema, V., Balter, R., Bellissard, L., Feliot, D., Freyssinet, A., Lacourte, S.:
Asynchronous, Hierarchical and Scalable Deployment of Component-Based Ap-
plications. In: Proc. of the 2nd International Working Conference on Component
Deployment (CD 2004), Edinburgh, UK (2004)

16. Lacour, S., Perez, C., Priol, T.: Deploying CORBA Components on a Computa-
tional Grid: General Principles and Early Experiments Using the Globus Toolkit.
In: Proc. of the 2nd International Working Conference on Component Deployment
(CD 2004), Edinburgh, UK (2004)

17. Baude, F., Caromel, D., Huet, F., Mestre, L., Vayssiere, J.: Interactive and
Descriptor-based Deployment of Object-Oriented Grid Applications. In: Proc. of
the 11th International Symposium on High Performance Distributed Computing
(HPDC’02), Edinburgh, UK (2002)

18. Narasimhan, P., Dumitras, T., Paulos, A., Pertet, S., Reverte, C., Slember, J., Sri-
vastava, D.: MEAD: Support for Real-Time Fault-Tolerant CORBA. Concurrency
and Computation: Practice and Experience (2005)

The emergence of mobile devices, such as portable computers, PDAs, and mobile
phones, and the advent of the Internet and various wireless networking solutions make
computation possible anywhere. Applications involving these mobile devices are
highly dependent on the underlying network. Unfortunately, network connectivity fail-
ures are not rare: mobile devices face frequent and unpredictable connectivity losses
due to their constant location change and lack of network coverage; the costs of wire-
less connectivity often also induce user-initiated disconnection; and even the highly
reliable WAN and LAN connectivity is unavailable 1.5% to 3.3% of the time [24].

For this reason, highly distributed and mobile systems are challenged by the prob-
lem of disconnected operation [22], where the system must continue functioning in the
temporary absence of the network. This presents a major challenge for software sys-
tems that are highly dependent on network connectivity because each local subsystem
is usually dependent on the availability of non-local resources. Lack of access to a
remote resource can make a particular subsystem, or even the entire system unusable.

A software system’s availability is commonly defined as the degree to which a sys-
tem is operational and accessible when required for use [7]. In the context of highly
distributed, mobile environments, where the most common cause of (partial) system
inaccessibility is network failure [23], we quantify availability as the ratio of the num-
ber of successfully completed inter-component interactions in the system to the total
number of attempted interactions over a period of time.

Improving Availability in Large, Distributed
Component-Based Systems Via Redeployment

Marija Mikic-Rakic2, Sam Malek1,3, and Nenad Medvidovic1

1 University of Southern California, Computer Science Department,
Los Angeles, CA, 90089, USA
{malek, neno}@usc.edu

2 Google Inc., Santa Monica, CA, 90405, USA
marija@google.com

3 The Boeing Company, 5301 Bolsa Avenue, Huntington Beach,
CA, 92647, USA

sam.malek2@boeing.com

Abstract. In distributed and mobile environments, the connections among the
hosts on which a software system is running are often unstable. As a result of
connectivity losses, the overall availability of the system decreases. The
distribution of software components onto hardware nodes (i.e., the system’s
deployment architecture) may be ill-suited for the given target hardware
en-vironment and may need to be altered to improve the software system’s
avail-ability. The critical difficulty in achieving this task lies in the fact that
deter-mining a software system’s deployment that will maximize its availability
is an exponentially complex problem. In this paper, we present a fast approx-
imative solution for this problem, and assess its performance. In addition to
significantly improving availability, our solution, in general, also reduces the
overall interaction latency in the system. We evaluate our solution on a large
number of automatically generated application scenarios.

1 Introduction

A. Dearle and S. Eisenbach (Eds.): CD 2005, LNCS 3798, pp. 83 – 98, 2005.
© Springer-Verlag Berlin Heidelberg 2005

In this context, a key observation is that the distribution of software components
onto hardware nodes (i.e., a system’s software deployment architecture, illustrated in
Figure 1.) greatly influences the system’s availability in the face of connectivity losses.
For example, in such cases it is desirable to collocate components that interact fre-
quently. However, the parameters that influence the optimal distribution of a system
(e.g., the reliability of network links) may not be known before the system’s deploy-
ment. For this reason, the (initial) software deployment architecture may be ill-suited
for the given target hardware environment. This means that a redeployment of the soft-
ware system may be necessary to improve its availability.

There are several existing techniques that can support
various subtasks of redeployment, such as monitor-
ing [4] to assess hardware and software properties of
interest, component migration [3] to facilitate rede-
ployment, and dynamic system manipulation [21] to
effect the redeployment once the components are
migrated to the appropriate hosts. However, the criti-
cal difficulty in achieving this task lies in the fact that
determining a software system’s deployment that will
maximize its availability (i.e., the optimal deploy-
ment) is an exponentially complex problem: in the
most general case the complexity is kn, where k is the
number of hardware hosts and n the number of soft-
ware components. Existing approaches that recog-
nize this (e.g., I5 [1]) still assume that all system
parameters are known beforehand and that infinite
time is available to calculate the optimal deployment.

Other approaches, such as Coign [6], restrict their solution to two hosts and client-
server architectures, thus decreasing the algorithm’s complexity, but also the resulting
solution’s usefulness.

For most practical cases finding the optimal deployment is infeasible: it requires an
exponentially-complex “exact” algorithm. This paper presents an approximative algo-
rithm, Avala, for increasing a system’s availability by estimating the system’s rede-
ployment architecture in polynomial time. We provide a detailed assessment of Avala’s
performance. Since for large systems the optimal redeployment cannot be calculated in
a reasonable amount of time, we compare the availability achieved via our solution to
the availability of a system’s “most likely” deployment. We present two additional
algorithms that we have developed to obtain the availability of the most likely deploy-
ment. Finally, in addition to significantly improving the overall system availability, we
show that Avala, in general, also reduces the overall interaction latency in the system.

The Avala algorithm is part of an integrated solution to increasing a system’s avail-
ability [13,17,12], which enables the three key redeployment tasks: (1) monitoring the
system to gather the data that influences its availability; (2) estimating the redeploy-
ment architecture; and (3) effecting that architecture.

The remainder of the paper is organized as follows. Section 2 defines the problem
our work is addressing and discusses a set of assumptions in our approach. Section 3
presents an overview of the related work and of our overall redeployment approach.
Section 4 describes the exact algorithm and discusses its complexity. Section 5

Host 2Host 1

Host 3 Host 4

3
4

8
7

9

5

1 2

6

22

19

24
25

21

23 33

26

32

3029
31

28

10

20 27

18

11

17

1514
16

13

12

Host 5

37

34

39
4038

36
35

Fig. 1. A sample deployment
architecture with five hardware
hosts and 40 software compon-
ents. Dotted lines represent net-
work connectivity, while solid
lines represent interacting com-
ponents.

84 M. Mikic-Rakic, S. Malek, and N. Medvidovic

describes the Avala algorithm for the exponentially complex redeployment problem.
Section 6 presents our approach for evaluating Avala, the results of its assessment, and
our tool support. Section 7 discusses the characteristics as well as current limitations of
the Avala algorithm. The paper concludes with a discussion of future work.

The distribution of software components onto hardware nodes (i.e., a system’s soft-
ware deployment architecture) greatly influences the system’s availability in the face of
connectivity losses. For example, components located on the same host will be able to
communicate regardless of the network’s status, which is not the case with components
distributed across different hosts. However, the reliability of connectivity (i.e., the rate
of failure) among the “target” hardware nodes on which the system is deployed is usu-
ally not known before the deployment. The frequencies of interaction among software
components may also be unknown. Hence, the initial software deployment architecture
may be ill-suited for the given target hardware environment. This means that a rede-
ployment of the software system may be necessary to improve its availability.

The critical difficulty in achieving this task lies in the fact that determining a soft-
ware system’s deployment architecture that will maximize its availability (referred to
as optimal deployment architecture) is an exponentially complex problem.

In addition to the characteristics of hardware connectivity and software interaction,
there are other constraints on a system’s redeployment, including: (1) the available
memory on each host; (2) the required memory for each software component; and (3)
possible restrictions on component locations (e.g., two CPU-intensive components
may not be allowed to reside on the same host).

Figure 2. shows a formal model that captures the system properties and constraints,
and a formal definition of the problem. The memcomp function captures the required
memory for each component. The frequency of interaction between any pair of compo-
nents is captured via the freq relation. Each host’s available memory is captured via the
memhost function. The reliability of the link between any pair of hosts is captured via
the rel relation. Using the loc relation, deployment of any component can be restricted
to a subset of hosts, thus denoting a set of allowed hosts for that component. Using the
colloc relation constraints on collocation of components can be specified.

The definition of the problem contains the criterion function A, which formally
describes a system’s availability as the ratio of the number of successfully completed
interactions in the system to the total number of attempted interactions. Function f rep-
resents the exponential number of the system’s candidate deployments. To be consid-
ered valid, each candidate deployment must satisfy the three conditions. The first
condition in the definition states that the sum of memories of the components that are
deployed onto a given host may not exceed the available memory on that host. The sec-
ond condition states that a component may only be deployed onto a host that belongs to
a set of allowed hosts for that component, specified via the loc relation. Finally, the
third condition states that two components must be deployed onto the same host (or on
different hosts) if required by the colloc relation.

2 The Redeployment Problem

2.1 Problem Definition

Improving Availability in Large, Distributed Component-Based Systems 85

Model
Given:
(1) a set C of n components (Cn), a relation CCfreq : , and a function Cmemcomp :

jiji

ji
ji ccifcandcbetweenioncommunicatoffrequency

ccif
ccfreq

0
),(

cformemoryrequiredcmemcomp)(

(2) a set H of k hardware nodes (Hk), a relation HHrel : , and a function Hmemhost :

jiji

ji

ji

ji

hhifhandhbetweenlinktheofyreliabilit
htoconnectednotishif

hhif
hhrel 0

1
),(

hhostonmemoryavailablehmemhost)(

(3) Two relations that restrict locations of software components }1,0{: HCloc }1,0,1{: CCcolloc

ji

ji
ji hontodeployedbecannotcif

hontodeployedbecancif
hcloc

0
1

),(

ji

ji

ji

ji

candcofncollocatioonnsrestrictionoarethereif
cashostsametheonbetohascif
cashostsametheonbecannotcif

cccolloc
0
1
1

),(

Definition
Problem:
Find a function HCf : such that the system’s overall availability A defined as

n

i

n

j
ji

n

i

n

j
jiji

ccfreq

cfcfrelccfreq
A

1 1

1 1

),(

))(),((),(

is maximized, and the following three conditions are satisfied:

(1)
j

ihostjcompij hmemcmemhcfnjki)())()(],1[],1[

(2) 1))(,(],1[jj cfclocnj

(3)],1[],1[nlnk))()(()1),((lklk cfcfcccolloc

))()(()1),((lklk cfcfcccolloc

In the most general case, the number of possible functions f is
nk . However, note that some of these

deployments may not satisfy one or more of the above three conditions.

Fig. 2. Formal statement of the problem

The problem defined in Section 2.1 is an instance of the more general redeployment
problem, described in [16]. In this paper, we consider a subset of all possible con-
straints, and a specific criterion function, which is to maximize the system’s availabil-
ity. Through the loc and colloc functions, one can include other constraints (e.g.,
security, CPU, bandwidth), not directly captured in our problem description. However,
if multiple resources, such as bandwidth and CPU, are as restrictive as memory in a
given system, then capturing them only via the loc and colloc functions will not be suf-
ficient. In [16] we describe how such cases could be addressed, by introducing addi-
tional system parameters into the model and introducing additional constraints that a
valid deployment should satisfy. For example, for systems where the network band-
width and volume of exchanged data severely restrict the number of possible deploy-
ments, the formal problem statement would need to include two additional constraint
relations and an additional condition: (1) relation evt_size to capture the average size of

between a pair of hosts; and (3) the following condition:
data exchanged between a pair of components; (2) relation bw to capture the bandwidth

2.2 Assumptions

86 M. Mikic-Rakic, S. Malek, and N. Medvidovic

This condition states that, for each network link between a pair of hosts, the total
volume of data exchanged across that link does not exceed the link’s effective band-
width. The algorithm presented in this paper would need to be altered to ensure the sat-
isfaction of this condition.

Our definition of availability considers all inter-component interactions equally
important. For systems in which this may not be the case, the same model and algo-
rithm can still be used: the freq relation can be changed to correspond to the product of
interaction frequency and importance of data, and the remainder of the model and
problem definition would remain unchanged.

The problem presented in Section 2.1 is also based on the assumption that system
parameters are stable over a given period of time T, during which we want to improve
the system’s availability.1 It also relies on the assumption that the time required to per-
form the system’s redeployment is negligible with respect to T. Otherwise, the system’s
parameters would be changing too frequently and the system would undergo continu-
ous redeployments to improve the availability for parameters that change either before
or shortly after the redeployment is completed.We believe this to be a reasonable
assumption, which is reflective of a number of existing systems (e.g., see [20]).

Finally, our approach relies on the assumption that the given system’s deployment
architecture is accessible from some central location. We realize that this assumption
may not be justified in a class of software systems that are decentralized, and have
developed a decentralized solution that is complementary to this work [11]. However,
in a centralized system, the algorithm can leverage the availability of global knowledge
about system parameters on a central host to run more efficiently than a decentralized
algorithm (in terms of required computational and communicational resources). There-
fore, when dealing with a centralized system, it is preferable to use a centralized solu-
tion instead of a more generally applicable decentralized solution.

In this section we present a brief overview of disconnected operation approaches,
and provide an in-depth look at three approaches that have specifically focused on the
system redeployment problem. Additionally, to provide the context for Avala, we
present an overview of our overall approach.

We have performed an extensive survey of existing disconnected operation
approaches, and provided a framework for their classification and comparison [18].

 We do not require that system parameters be constant during T, but assume that each parameter can
be approximated with its average over T, with an error no greater than a given threshold [14,17].

),(*),(),(_
),(_*),(),(_

),(_),(_

)()(
]),1[],1[(

]),1[],1[(

,

yxyxyx

yxyxyx

ml
jiml

jmil

hhbwhhrelhhbweffectiveand
ccsizeevtccfreqccvoldatawhere

hhbweffectiveccvoldata

hcfhcfwhere
nlmnl

kijki

The most commonly used techniques for supporting disconnected operation are cach-
ing [9], hoarding [10], queueing remote interactions [6], and multi-modal components

3 Background and Related Work

3.1 Disconnected Operation

1

Improving Availability in Large, Distributed Component-Based Systems 87

[22]. None of these techniques changes the system’s deployment architecture. Instead,
they strive to improve the system’s availability by sacrificing either correctness (in the
case of replication) or service delivery time (queueing), or by requiring implementa-
tion-level changes to the existing application’s code [22].

I5 [1] proposes the use of the binary integer programming model for generating an
optimal deployment of a software application over a given network. I5 is applicable
only to systems with very small numbers of software components and target hosts, and
to systems whose characteristics, such as frequencies of component interactions, are
known at design time and are stable throughout the system’s execution.

Coign [6] provides a framework for distributed partitioning of COM applications
across the network. Coign employs the lift-to-front minimum-cut graph cutting algo-
rithm to choose a deployment architecture that will result in minimal overall communi-
cation time. However, Coign can only handle situations with two-host, client-server
applications. Coign recognizes that the problem of distributing an application across
three or more hosts is NP hard and does not provide solutions for such cases.

Kichkaylo et al. [8], provide a model, called component placement problem (CPP),
for describing a distributed system in terms of network and application properties and
constraints, and an AI planning algorithm, called Sekitei, for solving the CPP model.
CPP does not provide facilities for specifying the goal, i.e., a criterion function that
should be maximized or minimized. Therefore, Sekitei only searches for any valid
deployment that satisfies the specified constraints, without considering the quality of a
found deployment.

The Avala algorithm described in this paper is part of an integrated solution for
increasing the availability of a distributed system during disconnection [14,15,17,12],
without the shortcomings of the existing approaches. For instance, unlike [22] our
approach does not require any recoding of the system’s existing functionality or human
intervention; unlike [9] it does not sacrifice the correctness of computations; in com-
parison to [6] it minimizes service delivery delays; finally, unlike any of the existing
redeployment approaches, our approach scales to very large systems with arbitrary
topologies. We directly leverage a software system’s architecture in accomplishing this
task. We support runtime redeployment to increase the software system’s availability
by (1) monitoring the system, (2) estimating its redeployment architecture, and (3)
effecting the estimated redeployment architecture. We provide lightweight facilities for
runtime monitoring [17,12] to extract the system’s model (recall Figure 2.). The moni-
toring information is then used by Avala to estimate the improved deployment archi-
tecture. Finally, we provide a set of automated deployment facilities [15,12] to effect
the estimated architecture.

One can ensure that she will find a system’s optimal deployment by trying all possi-
ble deployments of components onto hosts. The selected deployment is the one that has
the maximum availability (referred to as exact maximum) and that satisfies the con-

3.2 Redeployment

3.3 Our Overall Approach

4 Exact Algorithm

88 M. Mikic-Rakic, S. Malek, and N. Medvidovic

this algorithm in the general case (i.e., with no restrictions on component locations) is
O(kn), where k is the number of hardware hosts, and n the number of software compo-
nents. By fixing a subset of m components to selected hosts, the complexity of the
exact algorithm reduces to O(kn-m). Even with this reduction, this algorithm may be
computationally too expensive unless the number of hardware nodes and unfixed soft-
ware components is very small. For example, even for a relatively small deployment
architecture (15 components, 4 hosts), a Java JDK 1.4 implementation of the exact
algorithm runs for more than eight hours on a mid-range PC.

Given the complexity of the exact algorithm, we had to devise an approximative
algorithm that would significantly reduce this complexity while exhibiting good per-
formance. In this section, we describe and assess the performance of Avala, an approx-
imative algorithm with polynomial time complexity. Avala leverages a greedy
approach [2].

Pseudo-code of Avala is provided in Figure 3. Avala incrementally assigns software
components to the hardware hosts. At each step of the algorithm, the goal is to select
the assignment that will maximally contribute to the availability function. This is
achieved by selecting the “best” host and “best” software component at each step.

Avala starts by ranking all hardware nodes and software components. The initial
ranking of hardware nodes is done by calculating initHostRank for each hardware node
i, as follows:

where a and b are calibration factors that denote the respective contributions of link
reliability and memory to the selection of the “best” host. In Section 6 we discuss how
varying a and b influences the algorithm’s performance.

The ranking of software components is done by calculating initCompRank for each
component i, as follows:

where d and e denote the respective contributions of event frequency and memory to
the selection of the “best” component. In Section 6 we also discuss how varying d and
e influences the algorithm’s performance.

After the initial ranking is performed, the host with the highest value of initHos-
tRank is selected as the current host h. A component with the highest value of initCom-
pRank that satisfies the mem and loc constraints (conditions 1 and 2 in Figure 2.) is

)(*),(*
1

ihost

k

j
jii hmembhhrelankinitHostRa

)(
),(*

1 icomp

n

j
jii cmem

eccfreqdnkinitCompRa

straints posed by memory and restrictions on the locations of software components.
This “exact” algorithm guarantees at least one optimal deployment. The complexity of

ones with smallest required memory whose placement on h would maximally contrib-
ute to the availability function, i.e., the components with the highest volumes of inter-

selected and assigned to h. The next software component(s) to be assigned to h are the

action with the component(s) already assigned (mapped) to h. The selection is
performed by calculating the value of compRank for each unassigned component as
follows:

5 The Avala Algorithm

Improving Availability in Large, Distributed Component-Based Systems 89

The next host to be selected is the one with the highest memory capacity and highest
link quality (i.e., highest value of hostRank) with the host(s) already selected:

The process of selecting software components repeats, until all the components
have been assigned to a host.

The complexity of the Avala algorithm in the most general case (i.e., when the num-
ber of components fixed to a single host is zero, and there are more components than
hosts) is O(n3), derived as follows:

O(Avala_algorithm) = O((n-1) * (O(next_comp) + O(next_host))) =
O((n-1) * (n * O(compRank) + k * O(hostRank)) = O((n-1) * (n * n + k * k)) =
O(n3 + n * k2) = O(n3), if n>k

 Note that if there are few or no constraints on component location, and total avail-
able memory on hosts is significantly above the total required memory by the compo-
nents, some of the hosts will get filled to their capacity, while others may contain few
components or even be empty. The uneven distribution of components among hosts
results in higher overall availability of the system since it utilizes the maximum reli-
ability for interactions between components residing on the same host. However, it
may also result in undesirable effects on the system, such as overloading the CPUs on
hosts with large numbers of components, or overloading the used subset of network
links. The Avala algorithm currently addresses this concern only via the loc and colloc
constraints (e.g., by assigning a UI component to each host). However, as described in
Section 2.2, both the problem statement and the algorithm could be modified to take
other criteria (e.g., CPU, bandwidth) into consideration.

The contributions of Avala are two fold. By separating the component and host
selection process from the remaining algorithm’s logic, we can easily extend the algo-
rithm to include other system parameters and constraints. Secondly, by parameterizing
the selection process for components and hosts along two separate dimensions (mem-
ory and frequency in the case of components, and memory and reliability in the case of
hosts) the algorithm can automatically adapt to variations in input parameters.

Due to the exponential nature of the deployment problem, evaluating Avala’s results
against the exact solution is only feasible for very small systems (e.g., less than 15

)(*))(,(*)(
1

ihost

dHostsnumOfMappe

j
ii hmembjmappedHosthrelahhostRank

where mC(j) is shorthand for mappedComponents(j). The selected component is the
one with the highest value of compRank that satisfies memory, loc, and colloc con-
straints with respect to the current host h and components already assigned. This pro-
cess repeats until h is full (i.e., there is no component small enough to fit on h).

)(
)))((,(*))(,(*),(

1 icomp

dCompsnumOfMappe

j
ii cmem

ejmCfhreljmCcfreqdhccompRank

components and 4 hosts). In these cases, the exact algorithm can also produce the aver-
age availability of all the deployments (referred to as exact average), thus providing an
additional criterion for evaluation. However, we still need to assess how well the Avala
algorithm performs for systems with (much) larger numbers of components and hosts.
To that end, we use two additional algorithms discussed below.

6 Evaluation

90 M. Mikic-Rakic, S. Malek, and N. Medvidovic

randomly generated deployment satisfies all the constraints, the availability of the pro-
duced deployment architecture is calculated. This process repeats a given number of
times, and the average availability (referred to as unbiased average) and maximum
availability (referred to as unbiased maximum) are calculated. The complexity of cal-
culating the availability for each valid deployment is quadratic (recall Figure 2.),
resulting in the same complexity of the overall unbiased stochastic algorithm (O(n2)).

In addition to this
algorithm, for the sake of
completeness we also
compare Avala’s results
against another stochas-
tic algorithm (called
biased stochastic algo-
rithm) that we have
developed and assessed
previously [14]. The
biased stochastic algo-
rithm randomly orders
the hosts and randomly
orders the components.
Then, going in order, it
assigns as many compo-
nents to a given host as
can fit on that host (due
to memory constraints),
also ensuring that the loc
and colloc constraints are
satisfied. Once the host is
full, the algorithm pro-
ceeds with the same pro-
cess for the next host in
the ordered list of hosts,
and the remaining unas-
signed components in the
ordered list of compo-
nents, until all compo-
nents have been
deployed. This process
repeats a given number
of times, and the average
availability (referred to

next _host (unmappedHosts)
bestHostRank 0
bestHostIndex -1
for idx to unmappedHosts.length

thisHostRank hostRank(unmappedHosts[idx])
if bestHostRank < thisHostRank

bestHostIndex idx
bestHostRank thisHostRank

if bestHostIndex=-1 return NULL
else return unmappedHosts[bestHostIndex]

O(k2)

next_comp(comps, unmappedComps, currentHost)
bestCompRank 0
bestCompIndex -1
mappedComps comps – unmappedComps
for idx to unmappedComps.length

if (unmappedComps[idx].memory <= currentHost.memory
and unmappedComps[idx] sastisfies loc

and colloc constraints with mappedComps)
thisCompRank compRank(unmappedComps[idx],

currentHost)
if bestCompRank < thisCompRank

bestCompIndex idx
bestCompRank thisCompRank

if bestCompIndex=-1 return NULL
else return unmappedComps[bestCompIndex]

O(n2)

avala_algorithm (hosts, comps)
numOfHosts hosts.length
numOfComps comps.length
numOfMappedComps 0
unmappedComps comps
h host with max(initHostRank)
unmappedHosts hosts – h
numOfMappedHosts 1
c component with max(initCompRank where loc(c,h)=1)
while (numOfMappedComps < numOfComps
and numOfMappedHosts < numOfHosts and h<>-1)

while (h.memory>c.memory
and numOfMappedComps < numOfComps and c<>-1)

unmappedComps unmappedComps – c
numOfMappedComps numOfMappedComps + 1
h.memory h.memory – c.memory
deployment deployment U (deploy c to h)
c next_comp(comps,unmappedComps,h)

h next_host(unmappedHosts)
unmappedHosts hosts – h
numOfMappedHosts numOfMappedHosts + 1

if numOfMappedComps= numOfComps return deployment
else NO DEPLOYMENT WAS FOUND

O(n3)

We have developed a stochastic algorithm (called unbiased stochastic algorithm)
that randomly selects a subset of all possible deployments, and uses the availabilities of
these deployments to estimate the average availability of a given system. The obtained
average availability corresponds to the system’s “most likely” availability. The unbi-
ased stochastic algorithm generates different deployments by randomly assigning each
component to a single host from the set of available hosts for that component. If the

Fig. 3. Pseudo-code of the Avala algorithm (left) and its
complexity (right)

6.1 Evaluation Criteria

Improving Availability in Large, Distributed Component-Based Systems 91

environment that supports specification, manipulation, visualization, and (re)estima-
tion of deployment architectures for large-scale, highly distributed systems. DeSi pro-
vides users with a graphical front-end to input values for numbers of hosts and
software components as well as the ranges for available memory on the hosts, required
memory for the components, frequency of interaction between components, and reli-
ability of connectivity between hosts. DeSi uses this information to randomly generate
a redeployment problem by fixing all hardware and software parameters needed as
inputs to the algorithms. DeSi provides the ability to invoke different redeployment
algorithms and display their results. Finally, the algorithms can be benchmarked a
given number of times: DeSi iteratively generates different redeployment problems a
specified number of times using the same set of ranges for input data, invokes each one
of the algorithms for each problem, and calculates the average results.

DeSi provides a number of additional facilities for visualizing and graphically
manipulating a system’s deployment architecture, as well as several host- and compo-
nent-specific views. A discussion of these facilities is outside the scope of this paper,
however, and can be found in [15].

We have assessed the performance of the Avala algorithm by comparing it against
the exact algorithm and the two stochastic algorithms for systems with small numbers
of components and hosts (i.e., less than 13 components, and less than 5 hosts).

In large numbers of ran-
domly generated redeploy-
ment problems, the Avala
algorithm invariably found a
solution that was at least
90% of the optimal (i.e., the
exact maximum). In Table 1,
we present results of 5 differ-
ent redeployment problems,
as well as the average results
for 30 different randomly
generated problems (using
the DeSi’s benchmark option
and shown in the right-most
column). The average
improvement of availability
by Avala over the exact aver-
age was 34.7%.

 The highlighted columns in Tables 1 and 2 will be discussed further in Section 7.

10
 co

m
ps

4
ho

sts
1

ite
ra

tio
n

10
 co

m
ps

4
ho

sts
1

ite
ra

tio
n

10
 co

m
ps

4
ho

sts
1

ite
ra

tio
n

10
 co

m
ps

4
ho

sts
1

ite
ra

tio
n

10
 co

m
ps

4
ho

sts
1

ite
ra

tio
n

10
 co

m
ps

4
ho

sts
30

 ite
ra

tio
ns

Unbiased maximum 0.790 0.732 0.636 0.763 0.932 0.742

Unbiased average 0.560 0.558 0.605 0.516 0.581 0.585

Biased maximum 0.621 0.701 0.615 0.679 0.745 0.738

Biased average 0.572 0.551 0.606 0.544 0.633 0.626

Exact maximum 0.895 0.800 0.733 0.985 0.983 0.820

Exact average 0.558 0.555 0.628 0.513 0.580 0.585

Avala 0.854 0.792 0.673 0.984 0.962 0.788

% improvement over
the exact averagea

a. calculated as 100% * (Avala – exact average) / exact average

53.0 42.7 7.2 91.8 65.9 34.7

% improvement over
the unbiased averageb

b. calculated as 100% * (Avala – unbiased average) / unbiased average

52.5 41.9 11.2 90.6 65.5 34.7

% of the exactc

c. calculated as 100% * Avala / exact maximum

95.4 99 91.8 99.9 97.9 96.1

as biased average) and maximum availability (referred to as biased maximum) are cal-
culated. The complexity of this algorithm is also polynomial, since we need to calcu-
late the availability for every deployment, and that takes O(n2) time.

To assess Avala’s performance, we have leveraged DeSi [15], a visual deployment

Table 1. Comparing the performance of Avala for
different architectures with 10 components and 4 hosts

6.2 Testing Environment

6.3 Evaluation Results

2

2

92 M. Mikic-Rakic, S. Malek, and N. Medvidovic

problems.
Table 2 illustrates the results of 6 different benchmarks where the number of com-

ponents was varied between 30 and 1000 and number of hosts between 7 and 100. The
average relative improvement of availability produced by Avala was 33.9% over the
unbiased average, 30% over the unbiased maximum, 28% over the biased average, and
11% over the biased maximum. Avala also produced its results quickly. For illustration,
it took 38 seconds to solve the largest problem (100 hosts and 1000 components) on a
mid-range PC; by comparison, the exact algorithm would require over 101984 years to
determine the optimal deployment. Solving the same problem on a high-end computer
(2.8GHz Pentium 4) reduces Avala’s running time over 10-fold.

The following observa-
tions have further increased
our confidence that Avala is
finding nearly-optimal solu-
tions for large systems: (1)
for small systems (Table 1)
the unbiased average was
always very close to the
exact average, denoting that
the unbiased average pre-
cisely calculates the most
likely availability; (2) the
average improvement over
the unbiased average for
both small and large systems
was quite similar (e.g., note
the rightmost, i.e., benchmark columns of Tables 1 and 2); and (3) Avala’s results for
small systems were at least 90% of the optimal.

As described in Section 5, Avala can be fine-tuned by assigning different values to
the calibration factors a, b, d, and e. These factors denote the level of contribution of
different parameters (link reliability, frequency of interaction, and memory of hosts and
components) to the selection of the “best” host or “best” component. There are at least
three different possibilities for selecting these factors: (1) predefined, constant values;
(2) values selected and varied by a human user; or (3) automatically calculated values.
We have implemented a generation facility for these factors that has been demonstrated
experimentally to be quite effective. We have observed that, with the increase of the
ratio of average host memory to average component memory, better results are
obtained if more emphasis is placed on memory factors (i.e., increasing b and e) than
on frequency and reliability factors (i.e., decreasing a and d). Experimentally we have
obtained the best results for systems where the number of hosts is smaller than the
number of components (i.e., k<n), calculating the calibration factors as:

10
0

co
m

ps
10

 h
os

ts
1

ite
ra

tio
n

20
0

co
m

ps
20

 h
os

ts
1

ite
ra

tio
n

10
00

 c
om

ps
 1

00
 h

os
ts

 1
 it

er
at

io
n

10
0

co
m

ps
 4

0
ho

st
s

 1
 it

er
at

io
n

30
 c

om
ps

 7
 h

os
ts

 1
 it

er
at

io
n

30
0

co
m

ps
 7

0
ho

st
s

30
 it

er
at

io
ns

Unbiased maximum 0.580 0.562 0.503 0.534 0.602 0.520

Unbiased average 0.521 0.535 0.502 0.527 0.512 0.508

Biased maximum 0.696 0.691 0.527 0.590 0.828 0.610

Biased average 0.574 0.564 0.506 0.539 0.610 0.532

Avala 0.787 .780 0.576 0.704 0.906 0.680

 % improvement over
the unbiased averagea

a. calculated as 100% * (Avala – unbiased average) / unbiased average

51.1 31.2 14.7 33.6 77.0 33.9

pared the results of Avala against the results of the stochastic algorithms. In [19], we
demonstrated that increasing the number of iterations beyond 10,000 does not signifi-
cantly change the average availability of the two stochastic algorithms. Thus, the sto-
chastic algorithms were executed with 10,000 iterations for larger deployment

For larger problems, where the exact algorithm is infeasible, we have com-

Table 2. Comparing the performance of the Avala
algorithm for larger deployment problems

6.4 Calibrating the Avala Algorithm

Improving Availability in Large, Distributed Component-Based Systems 93

responds to the factors calculated using the above formula, while the remaining rows of
the table correspond to manually assigned factors. The resulting availability of auto-
matically generated factors was within 1% of the best availability obtained with any
other combination of factors.

7 Discussion

Here we discuss the characteristics as
well as current limitations of the Avala
algorithm, and suggest possible direc-
tions for addressing these limitations.

For certain distributed systems, avail-
ability may not be the only, or the most
crucial property. In fact, networked sys-
tems have traditionally focused on mini-
mizing communication latencies as a key
goal. Latency is commonly defined as
the time taken to deliver a data packet
from the source to the receiver [5].
While minimizing latency was not our
primary goal in developing Avala, the
algorithm’s objective does naturally
result in significant reductions of compo-
nent communication latencies. The rea-
son for this is two-fold. First, by
increasing the overall system availability, some interactions that could not be success-
fully completed before now can be, thereby effectively reducing their latency from
infinity to some finite time. Secondly, by employing the strategy of deploying fre-
quently interacting components on the same host whenever possible, the latencies of
those components’ interactions are significantly reduced.

In order to compare the average interaction latency of a system’s initial deployment
to the deployment produced by Avala, we would have to average over all interaction
latencies in the system in both deployments. Since in both cases there may be interac-
tions that do not complete successfully due to network disconnections, those interac-
tion latencies will be infinite, thus preventing us from comparing the average latency of
the two deployments. For this reason, we will assume that network reliability of all
host-to-host links is 1, i.e., that each component interaction successfully completes.

Latency of a single interaction depends on the following parameters: (1) startup
latency, which is the constant communication overhead incurred in sending a zero

Va
lu

e
fo

r
fa

ct
or

s
a

an
d

c

Va
lu

e
fo

r f
ac

to
rs

b

an
d

e

10
0

co
m

ps
10

 h
os

ts
av

g
ho

st
 m

em
=8

5
av

g
co

m
p

m
em

=5
10

0
co

m
ps

10
 h

os
ts

av
g

ho
st

 m
em

=1
65

av
g

co
m

p
m

em
=1

1
15

 c
om

ps
5

ho
st

s
av

g
ho

st
 m

em
=6

0
av

g
co

m
p

m
em

=1
1

15
 c

om
ps

5
ho

st
s

av
g

ho
st

 m
em

=7
0

av
g

co
m

p
m

em
=1

1

0.9 0.1 0.739 0.759 0.75 0.85

0.8 0.2 0.745 0.775 0.772 0.86

0.7 0.3 0.739 0.769 0.773 0.858

0.6 0.4 0.737 0.757 0.772 0.856

0.5 0.5 0.732 0.738 0.74 0.853

0.4 0.6 0.722 0.728 0.734 0.837

0.3 0.7 0.699 0.717 0.706 0.837

0.2 0.8 0.672 0.706 0.642 0.837

0.1 0.9 0.66 0.701 0.622 0.832

Auto Auto 0.744 0.772 0.772 0.861

b = e = 0.1 * (average host memory * k) / (average comp memory * n) and a = d = 1-b

The benchmarks shown in Tables 1 and 2 are obtained using the above formulas for
the calibration factors. Table 3 shows the benchmark data for the calibration factors
using four different, randomly generated systems with varying numbers of components
and hosts, and varying ranges for host and component memory. The “Auto” value cor-

Table 3. Comparing the performance of Avala
for different values of calibration factors,
including their automatic generation

7.1 Interaction Latency

94 M. Mikic-Rakic, S. Malek, and N. Medvidovic

hosts. We assume that the latency of interaction for two components deployed onto
the same host is zero (i.,e., delay (h,h) =0 and bw(h,h)=).

We have per-
formed a series of
benchmark tests to
quantify the effect of
Avala’s results on
average component
interaction latency.
To that end, we have
extended our DeSi
environment with
random generation
of startup latencies
within a specified
range, and auto-
mated calculation of
average latencies for
both a system’s ini-
tial deployment and
the deployment cal-
culated by Avala. Figure 4. shows the results of these benchmarks. In most cases, rede-
ployments produced by Avala reduced the average interaction latency by 40% - 80%.

Avala, however, does not guarantee interaction latency reduction. In extreme cases,
where each host’s available memory is limited such that only a very small number of
components can be deployed onto the host, the benefit of co-locating components can-
not be leveraged. This case is illustrated in last column of Figure 4., where each host
could only contain a single component due to memory constraints. Furthermore, since
we are not assuming correlation between network reliability and bandwidth (e.g., a
highly reliable link may have low bandwidth and vice versa), in some cases Avala may
suggest deploying of components between hosts with high reliability and low band-
width links, thus resulting in increased latency. One way to address this situation is to
include bandwidth and event size as selection parameters for the “best” host and “best”
component in Avala. We are currently implementing and evaluating this solution and
its impact on both system availability and interaction latency.

 Recall Section 2.2 for definitions of evt_size and bw.

a. calculated as (Avala_availability – initial_availability) /

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

Relative
improvement of
availability

Relative reduction
of latency

num comps
num hosts

event range (KB)
bw range (KB/s)

delay range (ms)

10 100 100 100 100 100
4 40 40 40 40 100
0.1-10 0.1-10 0.1-10 0.1-1000 1-5 1-5
30-1000 30-1000 30-50 0.01-1000 0.01-1000 0.01-1000
10-20 10-20 10-20 10-20 10-20 10-20

a

b

length message [5], (2) network bandwidth of a link through which the interaction is
performed, and (3) the size of message exchanged. To calculate the average latency in
a given system, we use the following formula:

where delay represents the startup latency of a given network link between two

n

i

n

j
ji

n

i

n

j ji

ji
jiji

ccfreq

cfcfbw
ccsizeevt

cfcfdelayccfreq

avgLatency

1 1

1 1

),(

))(),((
),(_

))(),((*),(

Fig. 4. The effect of redeployment calculated by Avala on average
 interaction latency. Each result was obtained by averaging over 20
different, randomly generated redeployment problems.

3

3

Improving Availability in Large, Distributed Component-Based Systems 95

the system becomes more constrained in terms of component location and collocation,
the probability that Avala will divert significantly from the exact solution lessens.

By reducing the total available memory for hosts and/or increasing the total
required memory for components, both the number of valid deployments and the sys-
tem availability decrease. Again, this is due to the fact that a large number of deploy-
ments with otherwise high availabilities become invalid. In Tables 1 and 2 the
highlighted columns are illustrative examples that correspond to these types of situa-
tions. For the system shown in Table 1, the total available memory for hosts was only
6% greater than the total required memory for components, resulting in 980 valid (out
of over 1,000,000 possible) deployments. The relative improvement over the unbiased
average was 11%, which was substantially lower than in other, less memory con-
strained systems. At the same time, the achieved availability was still more than 90%
of the optimal availability. A similar situation can be observed in Table 2, although in
that case the only available comparisons are to the unbiased and biased averages.

If the reduction of the total available memory for hosts and/or increase in the total
required memory for components results in a very small number of valid deployments,
our algorithm does not always find a valid deployment. The reason is that Avala ini-
tially assigns the component with the highest initCompRank to the host with the high-
est initHostRank. If this assignment leads to an invalid solution due to the limited
available memory (e.g., just by assigning that component to that host the remaining
components cannot be assigned), then our algorithm does not find a valid deployment.

One way to address this situation would be to detect cases when it occurs and try a
different initial assignment. The number of different initial assignments is k*n, thus
increasing the algorithm’s complexity to O(k*n4). However, this still does not guaran-
tee that the algorithm would find a valid deployment. We plan to assess this solution
and possibly use additional backtracking techniques to address this limitation of Avala.

As the distribution, decentralization, and mobility of computing environments grow,
so does the probability that (parts of) those environments will need to operate in the
face of network disconnections. Our research is guided by the observation that, in these
environments, a key determinant of the system’s ability to effectively deal with net-

have observed that, by introducing a significant number of constraints, the obtained
availability starts to decrease. This is primarily due to the fact that the loc and colloc
constraints will render invalid some deployments with otherwise high availabilities.
For cases where either the size of the original problem or the reduction in the exact
algorithm’s complexity induced by the loc and colloc constraints enable us to invoke
the exact algorithm, we have observed that the difference between the exact maximum
and the availability produced by Avala actually decreases. The reason for this is that, as

The benchmark results from Section 6.3 assess Avala’s performance without using
the loc and colloc constraints. We have also tested Avala with these constraints and

7.2 Including the Constraints on Component Location

7.3 Reducing the Memory Difference

8 Conclusions and Future Work

96 M. Mikic-Rakic, S. Malek, and N. Medvidovic

system software available on a given host, and so on). These issues represent but a
small subset of related concerns that are emerging in the domain of distributed, mobile
computation and that will increasingly shape the software development of the future.

This material is based upon work supported by the National Science Foundation
under Grant Numbers CCR-9985441 and ITR-0312780. Effort also partially supported
by the Jet Propulsion Laboratory.

work disconnections is finding the appropriate deployment architecture. While the
redeployment problem has been identified in the existing literature, its inherent com-
plexity has either been ignored [1], thus making it infeasible for any realistic system, or
highly restricted [6], thus reducing the solution’s usefulness.

This paper has presented Avala, an efficient algorithm for improving a distributed,
component-based system’s availability via redeployment. Avala is part of an integrated
solution to increasing a system’s availability [14,15,17,12]. It has been thoroughly
assessed via a series of benchmarks. In addition to significantly improving system
availability Avala, in general, also reduces the overall interaction latency in the system.
While our experience thus far has been very positive, a number of pertinent questions
remain unexplored. Our future work will span issues such as (1) addressing situations
in which the system constraints highly restrict the solution space, and (2) expanding
our solution to include additional system parameters (e.g., battery power, display size,

Acknowledgements

References

[1] M. C. Bastarrica, et al. A Binary Integer Programming Model for Optimal Object
Distribution. 2nd Int’l. Conf. on Principles of Distributed Systems, Amiens, France, Dec.
1998.

[2] T. H. Cormen, et. al. Introduction to Algorithms. MIT Press, Cambridge, MA, 1990.
[3] A. Fuggetta, et. al. Understanding Code Mobility. IEEE Trans. on Software Engineering,

1998.
[4] D. Garlan, et al. Using Gauges for Architecture-Based Monitoring and Adaptation.

Working Conf. on Complex and Dynamic Systems Arch., Brisbane, Australia, Dec. 2001.

[5] http://www.epcc.ed.ac.uk/HPCinfo/glossary.html
[6] G. Hunt and M. Scott. The Coign Automatic Distributed Partitioning System. 3rd

Symposium on Operating System Design and Implementation, New Orleans, LA, Feb.
1999.

[7] IEEE Standard Computer Dictionary: IEEE Standard Computer Glossaries. New York,
NY: 1990.

[8] T. Kichkaylo et al. Constrained Component Deployment in Wide-Area Networks Using
AI Planning Techniques. Int’l. Parallel and Distributed Processing Symposium. April
2003.

[9] J. J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File System.
ACM Transactions on Computer Systems, vol. 10, no. 1, February 1992.

[10] G. H. Kuenning and G. J. Popek. Automated Hoarding for Mobile Computers. Proc. of
the 16th ACM Symp. on Operating Systems Principles, St. Malo, France, October, 1997.

Improving Availability in Large, Distributed Component-Based Systems 97

[11] S. Malek, et. al. A Decentralized Redeployment Algorithm for Improving the Availability
of Distributed Systems. In Proc. of the 3rd Int. Working Conference on Component
Deployment (CD 2005), Grenoble, France, Nov. 2005.

[12] S. Malek, et. al. Prism-MW: A Style-Aware Architectural Middleware for Resource
Constrained, Distributed Systems. IEEE Trans. on Software Engineering. Vol. 31, No. 3,
March 2005.

[13] N. Medvidovic, et al. Software Architectural Support for Handheld Computing. IEEE
Computer, September 2003.

[14] M. Mikic-Rakic and N.Medvidovic. Software Architectural Support for Disconnected
Operation in Highly Distributed Environments. CBSE7, Edinburgh, UK, May 2004.

[15] M. Mikic-Rakic, et. al. A Tailorable Environment for Assessing the Quality of
Deployment Architectures in Highly Distributed Settings. 2nd International Working
Conference on Component Deploymen (CD 2004), Edinburgh, UK, May 2004.

[16] M. Mikic-Rakic, et. al. Improving Availability in Large, Distributed, Component-Based
Systems via Redeployment. Technical Report USC-CSE-2003-515, 2003.

[17] M. Mikic-Rakic and N. Medvidovic. Support for Disconnected Operation via
Architectural Self-Reconfiguration. Int. Conference on Autonomic Computing (ICAC'04),
New York, May 2004.

[18] M. Mikic-Rakic and N. Medvidovic. Toward a Framework for Classifying Disconnected
Operation Techniques. ICSE WADS, Portland, OR, May 2003.

[19] M. Mikic-Rakic and N. Medvidovic. Software Architectural Support for Disconnected
Operation in Highly Distributed Environments. Tech. Report, USC-CSE-2003-506, 2003.

[20] Multi Router Traffic Grapher. http://scorpion77.cjb.net/mrtg/
[21] P. Oreizy et al. Architecture-Based run-time Software Evolution. ICSE’98, Japan, April

1998.
[22] Y. Weinsberg, and I. Ben-Shaul. A Programming Model and System Support for

Disconnected-Aware Applications on Resource-Constrained Devices. ICSE 2002,
Orlando, FL.

[23] J. Weissman. Fault-Tolerant Wide-Area Parallel Computing. IPDPS 2000 Workshop,
Cancun, Mexico, May 2000.

[24] Y. Zhang, et.al. The Stationarity of Internet Path Properties: Routing, Loss, and
Throughput. Technical Report, AT&T Center for Internet Research at ICSI, May 2000.

98 M. Mikic-Rakic, S. Malek, and N. Medvidovic

Abstract. In distributed and mobile environments, the connections among
the hosts on which a software system is running are often unstable. As a result
of connectivity losses, the overall availability of the system decreases. The
distribution of software components onto hardware nodes (i.e., the system’s
deployment architecture) may be ill-suited for the given target hardware en-
vironment and may need to be altered to improve the software system’s avail-
ability. Determining a software system’s deployment that will maximize its
availability is an exponentially complex problem. Although several polyno-
mial-time approximative techniques have been developed recently, these
techniques rely on the assumption that the system’s deployment architecture
and its properties are accessible from a central location. For these reasons, the
existing techniques are not applicable to an emerging class of decentralized
systems marked by the limited system wide knowledge and lack of central-
ized control. In this paper we present an approximative solution for the rede-
ployment problem that is suitable for decentralized systems and assess its
performance.

Highly distributed and mobile systems are challenged by the problem of disconnected
operation [25], where the system must continue functioning in the temporary absence
of the network. Disconnected operation forces systems executing on each network host
to temporarily operate independently from other hosts. This presents a major challenge
for software systems that are highly dependent on network connectivity because each
local subsystem is usually dependent on the availability of non-local resources. Lack of
access to a remote resource can make a particular subsystem, or even the entire system
unusable.

A software system’s availability is commonly defined as the degree to which a sys-
tem is operational and accessible when required for use [8]. In the context of highly dis-
tributed, mobile environments, where the most common cause of (partial) system inac-

A Decentralized Redeployment Algorithm for
Improving the Availability of Distributed

Systems

Sam Malek1,3, Marija Mikic-Rakic2, and Nenad Medvidovic1

1 University of Southern California, Computer Science Department,
Los Angeles, CA, 90089, USA
{malek, neno}@usc.edu

2 Google Inc., Santa Monica, CA, 90405, USA
marija@google.com

3 The Boeing Company, 5301 Bolsa Avenue,
Huntington Beach, CA, 92647, USA
sam.malek2@boeing.com

1 Introduction

A. Dearle and S. Eisenbach (Eds.): CD 2005, LNCS 3798, pp. 99 – 114, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The distribution of software components onto
hardware nodes (i.e., a system’s software deployment
architecture, illustrated in Figure 1.) greatly influenc-
es the system’s availability in the face of connectivity
losses. For example, in such cases it is desirable to
collocate components that interact frequently. How-
ever, the parameters that influence the optimal distri-
bution of a system (e.g., network reliability) may not
be known before the system’s deployment. For this
reason, the (initial) software deployment architecture
may be ill-suited for the given target hardware envi-
ronment. This means that a redeployment of the soft-
ware system may be necessary to improve its availa-
bility.

There are several existing techniques that can support various subtasks of redeploy-
ment, such as monitoring [4] to assess hardware and software properties of interest,
component migration [2] to facilitate redeployment, and dynamic system manipulation
[20] to effect the redeployment once the components are migrated to the appropriate
hosts. However, one of the critical difficulties in achieving this task lies in the fact that
determining a software system’s deployment that will maximize its availability (i.e., the
optimal deployment) is an exponentially complex problem: in the most general case the
complexity is kn, where k is the number of hardware hosts and n the number of software
components.

This paper accompanies our work on providing a centralized solution, which is
complementary to this paper and requires global knowledge of system parameters and
global control of the system’s redeployment [18]. Therefore, the centralized solution as-
sumes the existence of a central host that has reliable access to every other host in the
system. This assumption has made the centralized solution inapplicable to a wide range
of distributed systems (e.g., ad-hoc mobile networks) where such a reliable centralized
host does not exist.

In this paper we present an approximative algorithm for increasing a system’s avail-
ability that scales to the exponentially complex nature of this problem. The algorithm,
called DecAp, is decentralized and does not require global knowledge of system prop-
erties. We provide a detailed assessment of DecAp’s performance through its compar-
ison against several centralized algorithms. We leverage our deployment exploration
environment, called DeSi [17], in performing DecAp’s performance assessment. DeSi
supports quantitative assessment and comparison of different redeployment algorithms
as well as active visualization of a system’s deployment architecture.

The remainder of the paper is organized as follows. Section 2 defines the problem
our work is addressing and discusses a set of assumptions in our approach. Section 3
presents an overview of the related work. Section 4 describes the DecAp algorithm and
discusses its complexity. Section 5 discusses DecAp’s behavior. Section 6 presents our
approach for evaluating DecAp and the results of its assessment. The paper concludes
with a discussion of future work.

Host 2Host 1

Host 3 Host 4

3
4

8
7

9

5

1 2

6

22

19

24
25

21

23 33

26

32

3029
31

28

10

20 27

18

11

17

1514
16

13

12

Host 5

37

34

39
4038

36
35

cessibility is network failure [24], we quantify availability as the ratio of the number of
successfully completed inter-component interactions in the system to the total number
of attempted interactions over a period of time.

Fig. 1. A sample deployment
architecture with five hosts and 40
components

100 S. Malek, M. Mikic-Rakic, and N. Medvidovic

We describe a distributed
system as (1) a set of n com-
ponents with their proper-
ties, (2) a set of k hosts with
their properties, (3) a set of
constraints that a valid de-
ployment architecture must
satisfy, (4) the system’s ini-
tial deployment as a map-
ping of components to
hosts, and (5) a set of sys-
tem properties that are “vis-
ible” from a given host. Fig-
ure 2. shows a formal model
that captures the above sys-
tem properties and con-
straints.

The memcomp function
captures the required mem-
ory for each component.
The frequency of interac-
tion between any pair of
components is captured via
the freq function. Each
host’s available memory is
captured via the memhost
function. The reliability of
the link between any pair of
hosts is captured via the rel
function. Using the loc
function, deployment of
any component can be re-
stricted to a subset of hosts,
thus denoting a set of allowed hosts for that component. Using the colloc function, con-
straints on collocation of components can be specified. The relation dep denotes the cur-
rent deployment of the system’s components on hosts.

The function aware and the relation dom model the system’s decentralized nature.
Function aware denotes whether two hosts have access to each other’s properties and
the properties of components that reside on them. Relation dom denotes the “domain”
of a host hi, which is the set of all hosts of which hi is aware. A host’s domain corre-
sponds to the host’s extent of knowledge about the overall system’s parameters. For ex-
ample, in the centralized approach to the redeployment problem discussed above, the
assumption is that at least one host’s domain is the entire set of hosts H.

(1) A set C of n components (Cn) and two functions

CCfreq : and Cmemcomp :

jiji

ji
ji ccifcandcbetweencommunicoffrequency

ccif
ccfreq

.
0

),(

cformemoryrequiredcmemcomp)(

(2) A set H of k hardware nodes (Hk) and two functions

HHrel : and Hmemhost :

jiji

ji

ji

ji

hhifhandhbetweenlinktheofyreliabilit
htoconnectednotishif

hhif
hhrel 0

1
),(

hhostonmemoryavailablehmemhost)(

(3) Two functions that restrict locations of software components

}1,0{: HCloc and }1,0,1{: CCcolloc

ji

ji
ji hontodeployedbecannotcif

hontodeployedbecancif
hcloc

0
1

),(

ji

ji

ji

ji

candcofncollocatioonnsrestrictionoarethereif
cashostsametheonbetohascif
cashostsametheonbecannotcif

cccolloc
0
1
1

),(

(4) A relation Hdep : P (C) where)(ik hdepc iff kc is deployed on ih

(5) A function }1,0{: HHaware

othereach ofn informatio no have h and h if 0

).,(),,(
),,(),,(),,(

),,freq(c),(),(mem),,(

),(),(),(mem),(
,c),(c ,)(

:ninformatio following thehave 1

),(

ji

icomp

host

kj

kjki

kjkikj

kjcompiji

jijihost

kjii

ji

ji

cccolloccccolloc
hclochclocccfreq

ccmemchhrel

hdephdephhmem
HhChdephdepc

handhif

hhaware

and a relation Hdom : P (H), where 1),aware(h iff)(k iik hhdomh

2 The Redeployment Problem

2.1 Problem Definition

Fig. 2. Formal redeployment model

A Decentralized Redeployment Algorithm 101

Figure 3. shows a formal
definition of the problem we
are solving. The criterion
function A describes a sys-
tem’s availability as the ratio
of the number of successfully
completed interactions in the
system to the total number of
attempted interactions. Func-
tion f represents the exponen-
tial number of the system’s
candidate deployments. To be
considered valid, each candi-
date deployment must satisfy
the three stated conditions: (1)
the sum of memories of the
components that are deployed
onto a given host may not ex-
ceed the available memory on
that host; (2) a component
may only be deployed onto a host that belongs to the set of allowed hosts for that com-
ponent, specified via the loc function; and (3) two components must be deployed onto
the same host (or on different hosts) if required by the colloc function.

The problem defined in Figure 3. is an instance of the more general redeployment prob-
lem, described in [18]. In this paper, we consider a subset of all possible constraints, and
a specific criterion function, which is to maximize the system’s availability. Through
the loc and colloc functions, one can include other constraints (e.g., security, CPU,
bandwidth), not directly captured in our problem description. However, if multiple re-
sources, such as bandwidth and CPU, are as restrictive as memory in a given system,
then capturing them only via the loc and colloc functions will not be sufficient. In [18]
we describe how such cases could be addressed, by introducing additional system pa-
rameters into the model and introducing additional constraints that a valid deployment
should satisfy.

Our definition of availability considers all inter-component interactions equally im-
portant. For systems in which this may not be the case, the same model and algorithm
can still be used: the freq function can be changed to correspond to the product of inter-
action frequency and importance, and the remainder of the model and problem defini-
tion would remain unchanged.

The problem presented in section 2.1 is also based on the assumption that system
parameters are reasonably stable over a given period of time T, during which we want
to improve the system’s availability.1 It also relies on the assumption that the time re-
quired to perform the system’s redeployment is negligible with respect to T. Otherwise,

 We do not require that system parameters be constant during T, but assume that each parameter
can be approximated with its average over the period T, with an error no greater than a given
threshold [19].

Find a function HCf : such that the system’s overall availability

A defined as

n

i

n

j
ji

n

i

n

j
jiji

ccfreq

cfcfrelccfreq
A

1 1

1 1

),(

)))(),((),((

is maximized, and the following three conditions are satisfied:

(1)
j

ihostjcompij hmemcmemhcfnjki)())()(],1[],1[

(2) 1))(,(],1[jj cfclocnj

(3)],1[],1[nlnk

))()(()1),((lklk cfcfcccollocif

))()(()1),((lklk cfcfcccollocif

In the most general case, the number of possible functions f is
nk .

However, note that some of these deployments may not satisfy
one or more of the above three conditions.

Fig. 3. Formal statement of problem definition

2.2 Assumptions

102 S. Malek, M. Mikic-Rakic, and N. Medvidovic

1

the system’s parameters would be changing too frequently and the system would under-
go continuous redeployments to improve its availability.

Finally, our approach is based on the assumption that two hosts that are aware of
each other will be able to reliably exchange the “meta-level” information (detailed in
Section 4) required for the correct functioning of the redeployment algorithm. This can
be ensured by employing existing techniques, e.g., delivery guarantee mechanisms
[14], or gossip-based protocols [3]. While such techniques may also be used to improve
the availability of the system itself, employing them for all application-level informa-
tion exchange will typically be too expensive.

In this section we present a brief overview of centralized redeployment approaches. We
also provide an overview of most commonly used decentralized cooperative algo-
rithms.

I5 [1] proposes the use of the binary integer programming model for generating an op-
timal deployment of a software application over a given network. I5 is applicable only
to systems with very small numbers of software components and target hosts, and to
systems whose characteristics, such as frequencies of component interactions, are
known at design time and are stable throughout the system’s execution.

Coign [7] provides a framework for distributed partitioning of COM applications
across the network. Coign employs the lift-to-front minimum-cut graph cutting algo-
rithm to choose a deployment architecture that will result in minimal overall communi-
cation time. However, Coign can only handle situations with two-host, client-server ap-
plications. Coign recognizes that the problem of distributing an application across three
or more hosts is NP hard and does not provide solutions for such cases.

Kichkaylo et al. [11], provide a model, called component placement problem
(CPP), for describing a distributed system in terms of network and application proper-
ties and constraints, and an AI planning algorithm, called Sekitei, for solving the CPP
model. CPP does not provide facilities for specifying the goal, i.e., a criterion function
that should be maximized or minimized. Therefore, Sekitei only searches for any valid
deployment that satisfies the specified constraints, without considering the quality of a
found deployment.

Finally, we have developed several algorithms for the centralized version of the re-
deployment problem [18]. In section 6.2, we briefly describe these algorithms, as they
will be used to assess the performance of DecAp.

Decentralized cooperative algorithms have been used in distributed systems to achieve
higher degrees of fault-tolerance, load balancing, and performance. The emergence of
decentralized environments, such as mobile ad-hoc networks and peer-to-peer sensor
networks has required decentralized algorithms to enable autonomous agents to coordi-
nate their interactions, make local decisions based on limited information, and cooper-

3 Related Work

3.1 Centralized Deployment Approaches

3.2 Decentralized Cooperative Algorithms

A Decentralized Redeployment Algorithm 103

Voting [12] is a method for coordinating distributed systems. A set of distributed
processors works independently on the same task, and then votes on their results to se-
lect one correct answer. Decentralized voting [6,10] increases the fault-tolerance in a
distributed system by using replicated voters to independently determine the majority
result, rather than relying on a central server to tally the results. In the context of the
redeployment problem, if each host independently calculates the system’s redeploy-
ment based on limited information, voting techniques could be employed to decide
which one of the redeployments should be effected.

Token Ring [9] is a classic solution to distributed mutual exclusion problems. All
hosts are arranged into a set of logical structures called rings. All communication occurs
along the channels that define a ring. One or more tokens circulate around the ring. To
use a shared resource, a host needs to acquire a token. When the host is finished, it pass-
es the token to the next host. The token ring technique can be used in the context of the
decentralized redeployment problem to control the simultaneous component migrations
in the system.

Market-Based [13,23] approaches are derived from economics concepts such as
trading and auctioning. The most popular market-based solution is the auction algo-
rithm, in which each auctioneer agent conducts auctions to sell some items (i.e., provid-
ed services or resources) by broadcasting an auction initiation message. A bidding agent
interested in an auctioned item sends a bid to the auctioneer agent. The bid is typically
calculated using a utility function that determines the bidding agent’s interest in the auc-
tioned item. The auctioneer agent determines the winner (typically the highest bidder)
and awards it the item. As will be detailed in section 4, DecAp leverages the market-
based approach for improving the system’s availability.

DecAp is a decentralized, collaborative auctioning algorithm for improving system-
wide availability. Each host in DecAp contains a single autonomous agent. These
agents collaborate to improve the overall system’s availability. Each agent has access
to the monitoring data within its domain of awareness (recall Figure 2.). An agent ex-
changes messages with other agents that are members of its host domain.

The auctioned items in DecAp are software components. For a component to be
ready for auctioning, its relevant parameters must be stable [19]. An agent plays two
roles during the redeployment process: (1) auctioneer, in which the agent conducts the
auction of its local components, and (2) bidder, in which the agent bids on components
auctioned by a remote agent. DecAp extends the classic auction algorithm in two ways:
(1) an auctioneer is allowed to participate in auctions it conducts, by setting the mini-
mum bid for the auctioned component; and (2) the auctioneer may adjust the received
bids.

To participate in an auction conducted on host ha, a bidder agent has to reside on
one of the hosts that are members of ha’s domain. Each agent can be in one of the fol-
lowing three states: auctioning, bidding, or free. The auctioning process for a single
component is as follows. First, the auctioneer announces an auction of a local compo-
nent ca. It then receives all the bids from bidders within its domain. Finally, the auction-
eer determines the “winner”, i.e., the location for ca within dom(ha) that results in high-

ate with other agents to achieve the overall system goals. We discuss some of the most
common decentralized cooperative approaches.

4 The DecAp Algorithm

104 S. Malek, M. Mikic-Rakic, and N. Medvidovic

As a result of a single auction, a component can move only to one of the hosts that
are inside the domain of the component’s auctioneer host. For this reason, multiple auc-
tions of a single component may be required before the “sweet spot” for that component
in the given distributed system is found. A component’s sweet spot is its deployment
location that does not change as a result of future auctions for that component. This is
known as the Nash Equilibrium State in market-based literature [13].

DecAp’s auctioneer and bidder algorithms use the following two functions:
1. the contribution of component cx to the overall availability of the domain of host hx

when cx is deployed on hx, defined as follows:

2. the available memory, (i.e., freeMemory) on a given host h
x
, defined as follows:

Below we describe both the auctioneer’s and the bidder’s algorithms and how they
are coordinated.

The auctioneer’s algorithm, performed on auctioneer’s host ha for one of its software
components ca (i.e.,), consists of the following eight steps, repeating the
steps for each component on ha:

1. If ca is ready to be auctioned, calculate the minimum bid for ca as fol-
lows:

2. If ha’s state is free, change it to auctioning, send the AUCTION INTENT message to all
hosts in dom(ha), and proceed to step 3. Otherwise, wait for a given time interval and
repeat step 2.

3. If all hosts in dom(ha) respond with an AUCTION ACCEPT message before the speci-
fied time-out, continue to step 4. Otherwise, send AUCTION CANCEL message to all
hosts in dom(ha), set ha’s state to free, wait for random time interval, and go back to
step 2.

4. Broadcast an AUCTION START message to every host in dom(ha). Include the minBid
in the message. The minBid sets up a threshold for an acceptable bid. It is used by
the bidders to determine whether they qualify to participate in the auction or not.

5. When the bids from all the hosts in dom(ha) are received, or a time-out occurs, adjust
the bids from the hosts that do not have enough memory for the auctioned compo-
nent. When a bidding host does not have enough memory for component ca, it needs
to trade ca with one of its local components. As will be detailed in section 4.2, each
host hb for which freeMemory(hb) < memcomp(ca), in addition to the bid, sends a set
of “tradable” components’ identifiers and their contributions (i.e.,

). For each host hb, the auctioneer determines the
best candidate component for trade ct, as a component whose migration from hb to
ha will have the smallest negative impact on the availability, as follows:

)()(
)),(*),((),(

xi ijhdomh hdepc
jxixxx ccfreqhhrelhconcontributi

)(
)()()(

xi hdepc
icompxhostx cmemhmemhfreeMemory

)(aa hdepc

),()(aaa hconcontributicminBid

)(bhdepT
),(bxx hconcontributiTc

est availability. To ensure that the winner is correctly determined, agents participating
in this auction cannot participate in other auctions at the same time.

4.1 Auctioneer’s Algorithm

A Decentralized Redeployment Algorithm 105

trade, as follows:

When adjusting the bids for all the hosts that do not have enough memory is com-
plete, go to step 6.

6. Find the winner host hw by selecting the highest bidder. If bid(ca,hw)>minBid, con-
tinue to step 7. Otherwise, ca remains deployed on ha; skip to step 8.

7. If hw has enough memory (i.e. freeMemory (hw) > memcomp(ca)), migrate ca to hw.
Otherwise, perform the trade by migrating ca to hw and migrating ct to ha.

8. Broadcast an AUCTION TERMINATION message to every host in dom(ha) to denote the
completion of this auction. Set ha’s state to free.

The bidder’s algorithm, where is the bidder host, consists of the follow-
ing eight steps:
1. When an AUCTION INTENT message arrives, if hb’s state is free, send the AUCTION

ACCEPT message to ha, set the state to bidding, and continue to step 2. Otherwise,
send the AUCTION REJECT message to ha.

2. If an AUCTION CANCEL message arrives, set the state to free, and go back to step 1.
If the AUCTION START message arrives from ha, calculate the bid for ca as the contri-
bution of ca to the availability of dom(hb) if ca were to be deployed on
hb:

3. If bid(ca,hb) < minBid, hb does not qualify to place a bid on ca, skip to step 8. Oth-
erwise create the bid message by including the bid(ca,hb). Proceed to step 4.

4. If hb has enough free memory for ca (i.e. freeMemory (hb) > memcomp(ca)), proceed
to step 7.

5. Since hb does not have enough memory for ca, find the set of “trada-
ble” components. A component is tradable when it has the adequate memory size for
the trade as follows:

6. If T is not empty, append to the bid message both the identifiers of all components
 and their contributions, contribution(cx,hb), and proceed to step 7. Otherwise,

when T is empty, a tradable component does not exist and component ca cannot be
deployed onto hb; skip to step 8.

7. Place the bid by sending the bid reply message to ha.
8. Upon arrival of the AUCTION TERMINATION message, set hb’s state to free.

To ensure that an agent participates in a single auction at a time, we employed a distrib-
uted locking mechanism using the state variable for each agent as described in steps 2,

)),(),(()),(*),(),((),(
),(

atbtatbaatba

ba

hconcontributihconcontributiccfreqhhrelccfreqhcbid
hcbid

)(ab hdomh

),(),(baba hconcontributihcbid

)(bhdepT

))}h()(()())(h)((

)()({

ab freeMemorycmemcmemfreeMemorycmem
cmemhdepcT

acompxcompxcomp

acompbx

Tcx

Then, the auctioneer recalculates the bid from host hb to adjust for the effect of the

),(),(min axbxxt hconcontributihconcontributiTcc

4.2 Bidder’s Algorithm

4.3 Analysis of the Two Algorithms

106 S. Malek, M. Mikic-Rakic, and N. Medvidovic

The worst-case time complexity analysis for each of the two algorithms is given be-
low (where k is the number of hosts and n is the number of components). Note that the
analysis of agent synchronization time complexity is not provided, since we adopted a
well-known distributed locking technique, whose complexity analysis is provided in
[22]. We also do not analyze the time complexity of performing the migration of com-
ponents between hosts, since a detailed analysis is provided in [19].

O(auctioneer) = O(step 1) + O(step 5) + O(step 6) = O(k*n) + O(n*k*n) + O(k)
=O(k*n2)
O(bidder) = O(step 2) + O(step 5) = O(k*n) + O(n) = O(k*n)

Finally, the auctioneer’s algorithm will be executed several times for each software
component. Some of these auctions may occur simultaneously within the entire system,
depending on the number of components on each host and the number of hosts within
each host’s domain. In the worst case (e.g., domain of each host is the entire set of hosts
H), the auctioneer’s algorithm executes in a sequential manner for each component, re-
sulting in the total complexity of DecAp to be n*O(auctioneer) = O(k*n3).

Below we discuss the salient aspects of DecAp’s behavior and performance in more de-
tail.

Algorithm’s Guarantee to Find a Solution. In [18] we identified situations
where the centralized algorithms do not always find a solution (e.g., if the total number
of deployments that satisfy all the constraints from Figure 3. is very small). In such sit-
uations, DecAp can still find an improved deployment, since it focuses on localized, in-
cremental improvement to the overall availability.

Algorithm’s Convergence. DecAp performs a redeployment of components only if
it results in the overall system’s availability increase. For this reason, each auction guar-
antees that the system’s availability will either increase or remain the same (if the auc-
tioned component remains on the auctioneer host). As will be illustrated in section 6,
the algorithm typically converges after only a few auctions for each component, i.e.,
subsequent auctions do not change the deployment architecture of the system. As soon
as the given host becomes the “sweet spot” for all of its components, the auctioneer al-
gorithm on that host assumes the algorithm’s convergence with a certain degree of con-
fidence, and extends the period of time before attempting a new auction (i.e., the host’s
dormant time). If during subsequent auctions the host remains the “sweet spot” for its
components, its degree of confidence, and thus the period of dormancy, increase.

Algorithm’s Sensitivity to the Level of Awareness. DecAp provides a flexible
approach for capturing the level of awareness present at each node, through careful def-
inition of the aware function and dom relation in our model. DecAp’s model does not
make any assumptions about what constitutes awareness among two hosts (i.e., when
aware(hi,hj)=1). We simply set a given host’s domain (i.e., the dom relation) to the set
of all the hosts of which it is aware. The model can then be instantiated with an imple-

3, and 8 of the auctioneer’s algorithm, and steps 1, 2, and 8 of the bidder’s algorithm.
To avoid deadlocks and starvation, each auctioneer waits a random interval of time be-
fore the next attempt at starting an auction.

5 Discussion

A Decentralized Redeployment Algorithm 107

pendent of the policy that constitutes host awareness, the performance of the algorithm
is significantly affected by the level of awareness present at each host. We will demon-
strate the sensitivity of our algorithm to the level of awareness in the next section.

Location Constraints. In section 2.2 we discussed how using the loc and colloc
functions can be leveraged to capture constraints other than memory. For clarity the al-
gorithm presented in section 4 did not explicitly describe how the location constraints
remain satisfied throughout the algorithm’s execution. The constraint imposed by the
loc function is enforced by inviting the hosts to participate in an auction only if they sat-
isfy the loc constraint.The constraint imposed by the colloc function is enforced as fol-
lows: (1) when a component cannot be on the same host as the auctioned component,
the auctioneer simply does not invite the host that contains that component to the auc-
tion, and (2) when two component have to be on the same host, the components are
merged into a single virtual component and therefore always auctioned at the same
time. Also note that through the use of loc and colloc, the complexity of the algorithm
is reduced proportionally to the extent of the constraints imposed by the two functions
in the given system [18].

Consideration of Additional System Properties. For certain distributed sys-
tems, availability may not be the only, or the most crucial property. For example, tradi-
tional networked systems have extensively focused on minimizing communication la-
tencies. While minimizing latency was not our primary goal in developing DecAp, we
should point out that the algorithm’s objective (deploying frequently interacting com-
ponents on the same host or on hosts with reliable network links) does naturally result
in significant reductions of component communication latencies. We are currently try-
ing to quantify the exact impact of DecAp on latency. Another relevant issue is the in-
clusion of network bandwidth in the system model, and the resulting algorithm. As dis-
cussed in section 2.2, in certain situations the location and collocation constraints can
be leveraged to capture additional system parameters, including network bandwidth.
However, if bandwidth becomes a scarce resource in the system, it will need to be con-
sidered separately. Our experience with the centralized redeployment algorithms (see

E

C

D

F

G

A

B

E

C

D

F

G

A

B

E

C

D

F

G

A

B

A) proximity based
awareness

B) Direct link based
awareness

C) Two hop link based
awareness

bandwidth or signal strength, and reliability of links. Figure 4. illustrates the effect of
using different policies for determining host awareness. While our algorithm is inde-

Fig. 4. Domain of host A with different policies for determining host awareness

mentation-level definition of awareness. Some commonly used policies in determining
aware hosts are: directly connected hosts, proximity of hosts, number of node hops,

108 S. Malek, M. Mikic-Rakic, and N. Medvidovic

In this section we provide a description of our approach in evaluating the performance
of DecAp. We also provide a detailed comparison of DecAp’s performance against sev-
eral centralized algorithms. Note that since DecAp is the first decentralized solution to
the redeployment problem of which we are aware, we can only compare its performance
against the existing centralized solutions.

In order to quickly assess the performance of DecAp on large numbers of redeployment
problems, involving large numbers of software components and hardware hosts, we im-
plemented a simulated version of DecAp that runs on a single physical host. The distri-
bution aspect of DecAp is simulated through the use of multiple, autonomous agents.
We simulated the decentralization aspect of DecAp through the use of multiple threads
and limited visibility among agents. DecAp was implemented in Java and integrated
with our deployment exploration environment DeSi. When DeSi’s user interface in-
vokes DecAp, a bootstrap thread instantiates an agent object for each host. Each agent
class is composed of two inner classes: auctioneer class and bidder class. Both auction-
eer and bidder classes have their own threads of execution, which are started once the
corresponding agent class is instantiated. Agents in the same domain are given access
to each other’s class variables. In our implementation of DecAp, we used direct links to
denote the awareness level of 1 (recall Figure 4.B). Subsequent levels of awareness cor-
respond to the number of intermediate hosts between a pair of hosts (recall Figure 4.C).
Auctioneer and bidder threads synchronize their interactions through message passing.
A shared data structure that holds the current deployment of the system is updated as a
result of each auction. DeSi’s bootstrap class calculates the overall availability of the
shared data structure in pre-specified time intervals. The algorithm terminates when the
availabilities at two consecutive time intervals are the same, which indicates that the al-
gorithm has converged to a solution.

In this section, we briefly describe three centralized algorithms we have developed pre-
viously for increasing a system’s availability by calculating a new deployment architec-
ture. A detailed explanation and evaluation of these algorithms is given in [18]. These
algorithms provide the basis for evaluating DecAp.

Exact Algorithm. This algorithm tries every possible deployment, and selects the
one that has maximum availability and satisfies the constraints posed by the memory
and restrictions on software component locations (exact maximum). This algorithm also
finds the average availability of all system deployments (exact average). The exact al-
gorithm guarantees at least one optimal deployment (assuming that at least one deploy-
ment is possible). The complexity of this algorithm in the general case (i.e., with no re-

6 Evaluation

6.1 DecAp’s Implementation

6.2 Evaluation Criteria

section 6.2) indicates that this parameter can be easily added to the system model and
that the resulting change to the algorithms themselves is straightforward.

A Decentralized Redeployment Algorithm 109

of the produced deployment architecture is calculated. This process repeats a given
number of times and the deployment with the best availability is selected (unbiased
maximum). The average availability of all valid deployments is also calculated (unbi-
ased average). The complexity of this algorithm is O(n2). In [18] we have experimen-
tally shown that unbiased average does not significantly deviate from the exact average
and thus signifies the system’s “most likely” availability.

Greedy Algorithm. This algorithm incrementally assigns software components to
the hardware hosts. At each step of the algorithm, the goal is to select the assignment
that will maximally contribute to the availability function, by selecting the “best” host
and “best” software component. Selecting the best hardware host is performed by
choosing a host with the highest sum of network reliabilities with other hosts in the sys-
tem, and the highest memory capacity. Similarly, selecting the best software component
is performed by choosing the component with the highest frequency of interaction with
other components in the system, and the lowest required memory. Once found, the best
component is assigned to the best host, making certain that all the constraints are satis-
fied. The algorithm proceeds with searching for the next best component among the re-
maining components, until the best host is full. Next, the algorithm selects the best host
among the remaining hosts. This process repeats until every component is assigned to
a host. The availability of the resulting deployment (greedy maximum) is calculated.
The complexity of this algorithm is O(n3) [18].

Table 1 provides
the comparison of
DecAp with the
three centralized al-
gorithms, in cases
where the graph of
hosts is fully con-
nected (possibly
via unreliable
links). Columns 4
and 5 show the re-
sults of running the
algorithms for 25
different redeploy-
ment problems and
averaging the re-
sults using the
benchmarking op-
tion of DeSi. De-

1 2 3 4 5

10
 c

om
ps

4

ho
st

s
1

pr
ob

le
m

50
 c

om
ps

15
 h

os
ts

1

pr
ob

le
m

25
0

co
m

ps
50

 h
os

ts
1p

ro
bl

em

10
 c

om
ps

4

ho
st

s
25

 p
ro

bl
em

s

50
 c

om
ps

15

 h
os

ts

25
 p

ro
bl

em
s

1 Exact maximum 0.816 infeasible infeasible 0.792 infeasible

2 Exact average 0.553 infeasible infeasible 0.525 infeasible

3 Unbiased maximum 0.756 0.611 0.512 0.699 0.544

4 Unbiased average 0.550 0.558 0.469 0.525 0.508

5 Greedy maximum 0.807 0.734 0.641 0.720 0.729

6 DecAp
Awareness level = 1

0.790 0.759 0.653 0.756 0.764

7 % improvement over the
unbiased averagea

a. calculated as 100% * (DecAp – unbiased average) / unbiased average

43 36 39 44 50

lowable hosts. If the generated deployment satisfies all the constraints, the availability

6.3 Evaluation Results

Table 1. Comparison of DecAp’s performance in deployment
architectures with fully connected graph of hosts

strictions on component locations) is O(kn), where k is the number of hardware hosts,
and n the number of software components. For this reason, executing the exact algo-
rithm is only feasible for very small systems.

Unbiased Stochastic Algorithm. This algorithm generates different deployments
by randomly assigning each component to a single host from a set of component’s al-

110 S. Malek, M. Mikic-Rakic, and N. Medvidovic

have any components initially deployed on them, they may not ever be selected as the
winners of any of the auctions.

Table 2 provides anoth-
er comparison of DecAp
with centralized algorithms
in cases where the graph of
hosts is not fully connected
(each column is labelled
with the percentage of
missing host-to-host links).
For each problem, the De-
cAp algorithm was execut-
ed three times with differ-
ent levels of awareness. As
the table indicates, the algo-
rithm’s performance is neg-
atively affected by the de-
crease in host inter-connec-
tivity. However, as long as
the graph of hosts is con-
nected, increasing the level of awareness improves DecAp’s performance significantly.
Columns 1-5 show such a scenario, where as a result of increasing the level of aware-
ness, the algorithm outperforms even the centralized algorithms. Column 6 shows an-
other scenario, where as a result of a very high percentage of missing links, “islands” of

1 2 3 4 5 6

50
 c

om
ps

15
 h

os
ts

20
%

 o
f l

in
ks

m
is

si
ng

50
 c

om
ps

15
 h

os
ts

50
%

 o
f l

in
ks

m
is

si
ng

50
 c

om
ps

15
 h

os
ts

80
%

 o
f l

in
ks

m
is

si
ng

10
0

co
m

ps
25

 h
os

ts
30

%
 o

f l
in

ks
m

is
si

ng
10

0
co

m
ps

25
 h

os
ts

60
%

 o
f l

in
ks

m
is

si
ng

10
0

co
m

ps
25

 h
os

ts
90

%
 o

f l
in

ks
m

is
si

ng

1 Original availability 0.427 0.265 0.176 0.385 0.227 0.06

2 Unbiased maximum 0.442 0.319 0.184 0.407 0.258 0.105

3 Unbiased average 0.442 0.284 0.146 0.375 0.219 0.084

4 Greedy maximum 0.604 0.530 0.339 0.590 0.411 0.283

5 DecAp
Awareness level = 1

0.644 0.479 0.301 0.613 0.445 0.194

6 DecAp
Awareness level = 2

0.747 0.582 0.349 0.618 0.455 0.250

7 DecAp
Awareness level = 3

0.747 0.582 0.367 0.618 0.460 0.261

8 % improvement over
original availability

74 119 108 60 102 335

Iteration
Number

10
 c

om
ps

4
ho

st
s

20
%

 o
f l

in
ks

m
is

si
ng

1
le

ve
l o

f
aw

ar
en

es
s

50
 c

om
ps

15
 h

os
ts

50
%

 o
f l

in
ks

m
is

si
ng

1
le

ve
l o

f
aw

ar
en

es
s

10
0

co
m

ps
25

 h
os

ts
70

%
 o

f l
in

ks
m

is
si

ng
1

le
ve

l o
f

aw
ar

en
es

s
25

0
co

m
ps

50
 h

os
ts

80
%

 o
f l

in
ks

m
is

si
ng

2
le

ve
ls

 o
f

aw
ar

en
es

s

Initial
Availability

0.450 0.254 0.174 0.099

1 0.776 0.423 0.312 0.219

2 0.881 0.483 0.334 0.231

3 0.910 0.500 0.342 0.243

4 0.933 0.503 0.350 0.248

5 0.974 0.519 0.354 0.250

6 0.974 0.529 0.360 0.253

7 0.974 0.529 0.360 0.253

% first itera-
tion / final
solution

79% 79% 86% 86%

Table 2. Comparison of DecAp’s performance in deployment architectures with varying levels
of disconnected links among hosts

Table 3. Demonstration of DecAp’s convergence

cAp provided at least 40% improvement over the system’s “most likely” deployment.
On average, DecAp produced results that were better than the centralized algorithms’
results. However, in certain situations the performance of DecAp could suffer, due to
its reliance on the initial deployment. For example, in situations where some of the
“best” hosts (recall the above description of the greedy algorithm) in the system do not

A Decentralized Redeployment Algorithm 111

exactly once. Note that the largest gain is achieved in the first iteration of the algorithm,
which shows that by just auctioning each component once, we can get a solution that is
at least 79% of the final solution. Also note that after the first iteration of the algorithm,
most components have found a “sweet spot”, which results in no further redeployment
of those components. This contributes to the quick convergence of the algorithm, typi-
cally around the fifth or sixth iteration. For the largest problem (shown in the last col-
umn of Table 3), DecAp’s execution time was 9.4s with the maximum auctioneer thread
wait of 10ms. However, a variation of DecAp that used thread notification executed the
same problem in 0.3s on a mid-range PC.

As the distribution, decentralization, and mobility of computing environments grow, so
does the probability that (parts of) those environments will need to operate in the face
of network disconnections. Our research is guided by the observation that, in these en-
vironments, a key determinant of the system’s ability to effectively deal with network
disconnections is finding the appropriate deployment architecture. While the redeploy-
ment problem addressed by our work has been identified in the existing literature, its
inherent complexity has either been ignored [1], thus making it infeasible for any real-
istic system, or highly restricted [7], thus reducing the solution’s usefulness. Further-
more, the existing solutions are not applicable to an emerging class of decentralized sys-
tems marked by the limited system knowledge and lack of centralized control.

This paper has presented an efficient decentralized algorithm for improving a dis-
tributed, mobile, component-based system’s availability via redeployment. The algo-
rithm is currently being integrated into an existing middleware platform [15] with built-
in capabilities for system monitoring and redeployment [19]. The algorithm has been
thoroughly assessed via a series of benchmarks. While our experience thus far has been
very positive, a number of pertinent questions remain unexplored. In addition to assess-
ing the performance of DecAp in a truly distributed environment, our future work will
span issues such as (1) extending the algorithm to identify “good” hosts in the system
even when they initially do not have any deployed components, (2) expanding our so-
lution to include additional system parameters (e.g., battery power, display size, system
software available on a given host, and so on), and (3) leveraging techniques such as
simulated annealing [21] to further improve the algorithm’s performance. These issues
represent but a small subset of related concerns that are emerging in the domain of dis-
tributed, mobile computation and that will increasingly shape the software development
of the future.

 Since we only wanted to illustrate the execution time of the algorithm’s logic, and not that of
agents’ synchronization, to obtain this result we leveraged the thread notification technique in-
stead of the random thread wait times described in Section 4. Note that employing thread notifi-
cation is possible only in a single-processor simulation of the algorithm.

7 Conclusions and Future Work

hosts (i.e. subsets of hosts that are not connected to each other) are created and DecAp
is not able to outperform the greedy algorithm. Finally, row 8 shows that DecAp was
able to improve the availability by at least 60% over the original availability in the case
of a fairly connected architecture, and by at most 335% in the case of a fairly discon-
nected architecture.

Table 3 shows DecAp’s convergence to a solution. Each iteration corresponds to the
resulting availability of the overall system after auctioning each one of the components

112 S. Malek, M. Mikic-Rakic, and N. Medvidovic

2

2

References

1. M. C. Bastarrica, et al. A Binary Integer Programming Model for Optimal Object Distribu-
tion. 2nd Int’l. Conf. on Principles of Distributed Systems, Amiens, France, Dec. 1998.

2. A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code Mobility. IEEE Trans. on
Software Engineering, May 1998.

3. A. J. Ganesh, A. Kermarrec, L. Massoulie. Peer-to-Peer Membership Management for
Gossip-Based Protocols, IEEE Transactions on Computers, Vol. 52, pp. 139-149, Feb.
2003.

4. D. Garlan, et al. Using Gauges for Architecture-Based Monitoring and Adaptation. Work-
ing Conf. on Complex and Dynamic Systems Arch., Brisbane, Australia, Dec. 2001.

5. D. K. Gifford, Weighted Voting for Replicated Data. In Proceedings of the 7th Symposium
on Operating System Principles, New York, 1979, pp. 150-162.

6. B. Hardekopf, et. al. A Decentralized Voting Algorithm for Increasing Dependability in
Distributed Systems. 5th World Multi- Conference on Systemic, Cybernetics and Informat-
ics (SCI2001), 2001.

7. G. Hunt and M. Scott. The Coign Automatic Distributed Partitioning System. 3rd Sympo-
sium on Operating System Design and Implementation, New Orleans, LA, Feb. 1999.

8. IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossa-
ries New York, NY: 1990.

9. W. Jia, J. Kaiser, E. Nett. An Efficient and Reliable Group Multicast Protocol. Second
International Symposium on Autonomous Decentralized Systems. Phoenix, Arizona., April
1995.

10. B. Johnson. Design and Analysis of Fault Tolerant Digital Systems, Addison-Wesley,
1989.

11. T. Kichkaylo et al. Constrained Component Deployment in Wide-Area Networks Using AI
Planning Techniques. Int’l. Parallel and Distributed Processing Symposium. April 2003.

12. R. Kieckhafer, C. Walter, A. Finn, P. Thambidurai. The MAFT Architecture for Distrib-
uted Fault Tolerance. IEEE Transactions On Computers, Vol. 37, No. 4, April 1988, pp.
398-405.

13. D. Kreps. Game Theory and Economic Modeling. Clarendon Press, Oxford, 1990.
14. E. A. Lee. Embedded software. Advances in Computers, 56, 2002.
15. S. Malek, M. Mikic-Rakic and N. Medvidovic. Prism-MW: A Style-Aware Architectural

Middleware for Resource Constrained, Distributed Systems. IEEE Trans. on Software
Engineering. Vol. 31, No. 3, March 2005.

16. N. Medvidovic, et. al. Software Architectural Support for Handheld Computing. IEEE
Computer, September 2003.

17. M. Mikic-Rakic et. al. A Tailorable Environment for Assessing the Quality of Deployment
Architectures in Highly Distributed Settings. 2nd International Working Conference on
Component Deployment (CD 2004), Edinburgh, UK, May 2004.

This material is based upon work supported by the National Science Foundation under
Grant Numbers CCR-9985441 and ITR-0312780. Effort also partially supported by the
Jet Propulsion Laboratory.

Acknowledgements

A Decentralized Redeployment Algorithm 113

18. M. Mikic-Rakic, et. al. Improving Availability in Large, Distributed, Component-Based
Systems via Redeployment. In Proceeding of the 3rd International Working Conference on
Component Deployment (CD 2005), Grenoble, France, Nov. 2005.

21. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,
Englewood Cliffs, NJ, 1995.

22. A. Tanenbaum. Computer Networks. Prentice Hall, Englewood Cliffs, New Jersey.
23. C. A. Waldpurger, et. al. Spawn. A Distributed Computational Economy. IEEE Trans. On

Software Engineering, February 1992
24. J. Weissman. Fault-Tolerant Wide-Area Parallel Computing. IPDPS 2000 Workshop, Can-

cun, Mexico, May 2000.
25. Y. Weinsberg, and I. Ben-Shaul. A Programming Model and System Support for Discon-

nected- Aware Applications on Resource-Constrained Devices. ICSE 2002, Orlando, FL.

19. M. Mikic-Rakic and N. Medvidovic. Software Architectural Support for Disconnected
Operation in Highly Distributed Environments. International Symposium on Component-
based Software Engineering (CBSE7), Edinburgh, UK, May 2003.

20. P. Oreizy et al. Architecture-Based run-time Software Evolution. ICSE’98, Kyoto, Japan,
April 1998.

114 S. Malek, M. Mikic-Rakic, and N. Medvidovic

Propagative Deployment of Hierarchical Components
in a Dynamic Network

Didier Hoareau and Yves Mahéo

Valoria Laboratory– University of South Brittany, France
{Didier.Hoareau, Yves.Maheo}@univ-ubs.fr

Abstract. This paper addresses the distribution and the deployment of hierar-
chical components on heterogeneous dynamic networks. Such networks may in-
clude fixed and mobile resource-constrained devices and are characterized by the
volatility of their hosts and connections, which may lead to their fragmentation.
We propose a propagative, hierarchically-controlled deployment process for such
networks and an ADL extension allowing the specification of this context-aware
deployment.

1 Introduction

The component-based approach becomes widely reckoned to be relevant for develop-
ing complex distributed applications and many component models and their associated
technologies are now available. Some of the proposed models (e.g. Koala [11], Dar-
win [6] or Sofa [9]), known as hierarchical models, wake up the interest of software
architects. In such models, a component –that is then called a composite component–
can be itself an assembly of components, recursive inclusion ending with primitive
components that encapsulate computing code.

Besides, the distributed platforms that are susceptible of being the target of com-
plex distributed applications, have evolved in a few years from homogeneous net-
works of workstations to networks of heterogeneous hosts that may comprise mobile
and resource-constrained devices. Among these platforms, dynamic networks represent
common but challenging environments. What we call a dynamic network is a network
that is characterised by its heterogeneity (e.g. hosts do not all provide similar hardware
and software resources), and its dynamism (e.g. hosts may become unaccessible be-
cause of their mobility or their volatility). A major consequence of this dynamism is
that the target platform cannot be considered as a fully connected network. It is rather
described as a partitioned network, viewed as a collection of independent islands. An
island is equivalent to a connected graph of hosts that can communicate together, while
no communication is possible between two islands. In addition, the configuration of the
islands may change dynamically.

This paper describes a distribution scheme of hierarchical components and its asso-
ciated deployment process that targets the abovementioned dynamic networks. Because
of the very constrained environment in which the application is to be deployed, we can
hardly envisage a permanent access to the services offered by the application or an op-
timal use of the resources. The emphasis is put on finding a distribution scheme and

A. Dearle and S. Eisenbach (Eds.): CD 2005, LNCS 3798, pp. 115–118, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

116 D. Hoareau and Y. Mahéo

some deployment mechanisms (focusing on the instantiation and the activation phases)
that achieve a minimal availability while taking account of the environment.

2 Distributed Hierarchical Component Model for Dynamic
Networks

In order to support network disconnections we propose a distributed hierarchical com-
ponent model which allows an application to run in a degraded mode, avoiding that the
entire application becomes unusable. We introduce the notion of active interface to the
component model. Our runtime support detects network disconnections and deactivates
some components’ interfaces accordingly. The underlying distribution scheme of the
model is based on the replication of composite components. This replication allows the
interfaces of a composite to be easily accessible on a set of hosts. Only the membrane,
that contains architectural information, is replicated, thus reducing consistency mainte-
nance problems. Each primitive component is localized on a single host, which reflects
the semantics of the architecture descriptor in which each reference to a component
corresponds one (possibly statefull) component. Further details about the distribution
and the support of this distributed hierarchical component model can be found in [5].

3 Context-Aware Deployment Specification

When considering the deployment of distributed components, the key issue is to build
a mapping between the component instances and the hosts of the target platform. This
task implies to have some knowledge not only about the identity of the hosts involved
in the deployment phase, but about the characteristics of each of them as well. How-
ever, at design-time, the designer is unlikely to know where to deploy each component
regarding resource availability. This motivates the need to differ this task at runtime.
We propose to add a deployment aspect to an existing architecture description language
(such as [2, 3]).This will allow the description of the resource properties that must be
satisfied by a machine for hosting a specific component.

We follow the approach of [4] to specify the deployment of the hierarchy of compo-
nents in a constraint-based declarative way (see figure 1). The architecture descriptors
of the components are augmented with deployment descriptors in which constraints on
the resources required by components and on their possible locations can be specified.
It is not mandatory to give explicit names or addresses to target machines: the place-
ment of components are mainly driven by constraints on the resources the target host(s)
should satisfy. The choice of the machine that will host a component will be made
automatically at runtime (during the deployment).

When the deployment is triggered, all the constraints listed in the deployment de-
scriptor may not be satisfied immediately. The dynamism of the network makes the
situation even more difficult as it may occur that the set of hosts that would satisfy
globally the deployment constraints are never connected together at the same time, pre-
cluding any deployment.

Propagative Deployment of Hierarchical Components 117

<component name="DocumentSearch">
<component name=" DocumentFinder ">

<deploymentcontext>
< locat ionconstraint >

< t a r g e t varname="x " / >
</ locat ionconstraint >

</deploymentcontext>
</component>
<component name=" DocumentBuffer ">

<deploymentcontext>

<resourceconstraint >
<memory f r ee ="200" u n i t ="MB"

operator ="min " / >
</ resourceconstraint >
< locat ionconstraint >

< t a r g e t varname="y " / >
</ locat ionconstraint >

</deploymentcontext>
</component>
<deploymentcontext>

< locat ionconstraint >
<operator name=" a l l d i f f ">

<arg varname=" t h i s . DocumentSearch . x " / >
<arg varname=" t h i s . DocumentBuffer . y " / >

</ operator
</ locat ionconstraint >

<deploymentcontext>
</component>

Fig. 1. Deployment descriptor

4 Propagative Deployment

The deployment process we propose is a propagative one: it allows an application to be
activated progressively, that is, part of its provided services can be put at disposal even
if some machines that are required for the "not yet" installed components are not avail-
able. As soon as these machines become connected (or accessible) or some required
resources appear (or become available), the deployment will go along. Thanks to our
distributed hierarchical component model and the dynamic activation of interfaces, the
application can run in a degraded manner even if some of its parts are not yet started.

The main issue of such a deployment is to ensure the unicity of the component
instantiations imposed by the architecture descriptor. Indeed on one hand, since we
cannot predict which machines will be connected at any time, we cannot select one
to be responsible for the instantiation decisions of the entire application. On the other
hand, if we let each machine make an instantiation decision, we cannot guarantee that
in two different islands contradictory instantiations may not be performed.

Ensuring consistent instantiations comes down to establishing a distributed consen-
sus across several islands. We use the results of [8] where the authors identify conditions
for which there exists an asynchronous protocol that solves the consensus problem de-
spite the occurrence of crashes. It is thus possible to elect a machine responsible for
the instantiation of a component within an island composed of a majority of machines.
When an applicant machine is elected and when an instantiation is made, the deploy-
ment descriptor is updated with this information. As in the work described in [10], the
scalability of our proposition is ensured by the distributed and hierarchical organisation
of the control: each composite component of the hierarchy is represented by a machine.

We propose to alleviate the risk that the consensus algorithm may not terminate (e.g.
the number of hosts within an island may not be sufficient) by taking advantage of net-
work changes to make the consensus evolve. We detect network changes (e.g. a machine
is newly connected) and possibly react to these changes (e.g. make a newly connected
machine participate to the consensus). Moreover, in order to avoid that a machine re-
sponsible for a composite component makes instantiation decisions in a non-majority
island, a reelection mechanism is triggered after comparing the different versions of the
deployment descriptors.

5 Conclusion

This paper has presented a support for deploying and executing an application built with
hierarchical components on an heterogeneous and dynamic network. The main contri-

118 D. Hoareau and Y. Mahéo

bution of this work is that it attempts to take into account a challenging distributed target
platform characterized by the heterogeneity and the volatility of the hosts, volatility that
may result in the fragmentation of the network.

The propagative deployment presented in this paper is based on a constraint-based
language for the description of the placement of the components according to resource
requirements. Our distributed component model has been implemented using Julia, a
Java implementation of the Fractal component model [1]. The standard Fractal ADL has
been extended thanks to the addition of new modules. We use D-Raje [7], a framework
developed in our team, dedicated to the observation of distributed system resources in
Java. We can thus detect network changes and exploit them in the deployment process.

The main direction of our future work consists in the extension of our propagative
deployment in order to define an autonomic deployment in which decisions about the
placement of components could be reconsidered.

References

[1] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. An Open Compo-
nent Model and its Support in Java. In Proc. of the Int. Symposium on Component-based
Software Engineering, Edinburgh, Scotland, May 2004.

[2] Acme: Acme Extensions to xArch. School of Computer Science Web Site: http://www-
2.cs.cmu.edu/ acme/pub/xAcme/, 2001.

[3] E. Dashofy, A. van der Hoek, and R. Taylor. An Infrastructure for the Rapid Development
of XML-based Architecture Description Languages. In Proceedings of the Int. Conference
on Software Engineering, pages 266–276, Orlando, Florida, USA, May 2002.

[4] A. Dearle, G. Kirby, and A. McCarthy. A framework for constraint-based deployment and
autonomic management of distributed applications. In Proc. of the Int. Conference on Au-
tonomic Computing, 2004.

[5] D. Hoareau and Y. Mahéo. Distribution of a Hierarchical Component in a Non-Connected
Environment. In Proc. of the 31th Euromicro Conference - Component-Based Software
Engineering Track, Porto, Portugal, September 2005.

[6] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed Software Archi-
tectures. In Proc. of the 5th European Software Engineering Conference, Sitges, Spain,
September 1995.

[7] Y. Mahéo, F. Guidec, and L. Courtrai. A Java Middleware Platform for Resource-Aware
Distributed Applications. In 2nd Int. Symposium on Parallel and Distributed Computing,
pages 96–103, Ljubljana, Slovenia, October 2003.

[8] A. Mostéfaoui, S. Rajsbaum, M. Raynal, and M. Roy. Condition-based consensus solvabil-
ity: a hierarchy of conditions and efficient protocols. Distributed Computing, 17(1), 2004.

[9] F. Plasil, D. Balek, and R. Janecek. SOFA/DCUP: Architecture for Component Trading
and Dynamic Updating. In Proc. of the 4th Int. Conference on Configurable Distributed
Systems, Annapolis, Maryland, US, may 1998.

[10] V. Quéma, R. Balter, L. Bellissard, D. Féliot, A. Freyssinet, and S. Lacourte. Asynchronous,
hierarchical and scalable deployment of component-based applications. In Proc. of the 2nd
Int. Working Conference on Component Deployment, Edinburgh, Scotland, May 2004.

[11] R. C. van Ommering. Koala, a Component Model for Consumer Electronics Product Soft-
ware. In Proc. of the ESPRIT ARES Workshop, Las Palmas de Gran Canaria, Spain,
February 1998.

Modelling Deployment Using Feature Descriptions
and State Models for Component-Based Software

Product Families�

Slinger Jansen and Sjaak Brinkkemper

Institute of Information and Computing Sciences,
Utrecht University

{slinger.jansen, s.brinkkemper}@cs.uu.nl

Abstract. Products within a product family are composed of different compo-
nent configurations where components have different variable features and a large
amount of dependency relationships with each other. The deployment of such
products can be error prone and highly complex if the dependencies between
components and the possible features a component can supply are not managed
explicitly. This paper presents a method that uses the knowledge available about
components to ensure correct, complete, and consistent deployment of configura-
tions of interrelated components. The method provided allows the user to perform
analysis on the deployment before the deployment is performed, thus allowing er-
ror prevention before making any changes to the system. The method and model
are discussed and presented to provide an alternative to current component de-
ployment techniques.

1 Component Deployment Issues

The deployment of enterprise application software is a complex task. This complex-
ity is caused by the enormous scale of the undertaking. An application will consist of
many (software) components that depend on each other to function correctly. On top
of that, these components will evolve over time to answer the changing needs and con-
figurations of customers. As a consequence, deployment of these applications takes a
significant amount of effort and is a time consuming and error-prone process.

Software components are units of independent production, acquisition, and deploy-
ment [1]. Software deployment can be seen as the process of copying, installing, adapt-
ing, and activating a software component [2]. Usually the only way to find out whether
a deployment has been successful is by running the software component. This leads
to frustrating and complex deployment processes for both the software vendor and the
system manager. There are many reasons why components that have been deployed
onto a system cannot be activated and run. The factors that increase complexity dur-
ing the steps of building, copying, installing, adapting, and activating a component are
numerous.

To begin with, there are relationships amongst components. Components can explic-
itly require or exclude a specific revision of a component. Some components allow for

� This research was supported by NWO/Jacquard grant 638.001.202.

A. Dearle and S. Eisenbach (Eds.): CD 2005, LNCS 3798, pp. 119–133, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

120 S. Jansen and S. Brinkkemper

only one version of the component to be deployed onto one system, placing a restriction
on the components that are to be deployed onto that system. If such relationships are not
respected the deployments will result in missing components and inconsistent compo-
nent sets. Secondly, deployments are also complex due to the fact that components can
be instantiated in different shapes and forms, due to variability [3]. A component that
supports variability can have different features that are offered to the user, which are
bound and finalized at different times during the deployment of that component. The
binding time of a component can be at different stages of the component deployment,
such as build-time or run-time. Thirdly, the order in which components are deployed
can determine whether the deployment process of a set of components is successful.
Components require other components during the deployment process and these can be
removed when the system has a limited set of resources. Also, when components ex-
clude each other and different deployment orderings are possible, the possibility arises
that one of these orders does not ensure correct deployment. The above holds especially
for component based product families [4], where many different variants of one system
are derived by combining components in different ways.

A components’ lifecycle consists of different states, such as source, built, deployed,
and running. Many parts of the process of a component going through these phases
have been automated to do such things as COTS (Components Off The Shelf) evalu-
ation, automated builds, automatic distribution, automatic deployment, and automated
testing. Current component lifecycle management systems, however, do not support dif-
ferent component (lifecycle) types, variability, component evolution, and are not feature
driven. One of the main reasons for initiating this research is that the current tools for
component deployment [5] do not take into account both variability, different types of
distribution (source, binary, packaged), and different binding times.

There are tools that can manage the lifecycle of components, such as Nix [6], the
Software Dock [2], and Sofa [7]. These systems have downsides however. To begin
with, Nix is a technology based on an open source environment that can guarantee con-
sistency between components and allows for concurrent installations of components.
The biggest downside of Nix is that it requires a system manager to ”stop the world”,
i.e., to adjust all the components the system uses to include a component description
and reinstall the system. The Software Dock can be used to deploy software using the
XML based Deployable Software Description [8] for describing the software. The Soft-
ware Dock does not support the complete lifecycle of a software component. It does,
however, focus on the complete deployment process of software, including such states
as activate. Finally, SOFA is a corba based component model that uses the OMG De-
ployment and Configuration specification [9], and is also focussed on the deployment of
generic components. Sofa, as well as Software Dock, only assumes a very simple life-
cycle with four states being source, built, deployed, and running. Of these three com-
ponent tools, only Nix focusses on variable features provided by different instantiations
of components, and only Nix discusses the opportunities for a transparent configuration
environment [10]. Software component developers often use their own specific deploy-
ment tools or custom build checks to see whether the system on which the component
is deployed satisfies all requirements for consistent and correct deployment [11]. The

Modelling Deployment Using Feature Descriptions and State Models 121

developer therefore must develop its own models and formalisations to ensure a correct
component deployment.

The situation described above calls for a generic modelling technique that can han-
dle the complex issues that are introduced by the use of variable components that can be
instantiated in different versions and forms on one system. Such functionality, of which
none of previously evaluated systems above provide it [5], requires a central knowledge
base that stores the variables that initialize the different varieties of component instances
and a categorization of such knowledge. This paper presents a modelling technique that
can support the deployment of a component in different versions and variants, and still
guarantee consistency and correctness. The modelling technique is based on a central
storing of the restrictions and knowledge about component features and the system,
thus allowing all components to use such information for correct build, release, testing,
deployment, and activation of software.

The rest of this paper is structured as follows. Section 2 proposes two types of de-
scribing the properties of a software component and its relationships to other software
components. Section 3 describes how the knowledge can be used to create an instanti-
ation tree of component instantiations by using the provided algorithm, thus enabling
the user to reason about deployment of software components. The algorithm is clarified
with an example. Finally, we discuss the proposed methods and models in Section 4
and provide some insight into our future work and the conclusions reached throughout
this research in Sections 5 and 5.

2 Component Descriptions

Currently used component models generally do not support consistent and complete de-
ployment. Most models used by conventional technology [5] such as InstallShield and
RPM-Update, focus on the artefacts that make up a component. Next to that these tech-
nologies perform some very general dependency resolution and only support the ”Re-
quires Always” relationship. These tools often have some scripting capabilities that can
be used to check whether the right resources are available, if required components for
the deployment processes are available, and to perform some pre- and post-installation
checking of the artefacts. These qualities, however, are underemphasized.

The model proposed here is based on three viewpoints. To begin with, a component
is not merely a set of artefacts. A component has a context that describes the rela-
tionships to the components, hardware, and configuration information that affect the
component upon and after deployment. A component also has internal variability, influ-
encing that context, which is bound at different times. Secondly, if a component model
supports variability, component features must be communicated to the user. This al-
lows for the user to select these features at different stages of the deployment, changing
the context as the component is built, activated, copied, and run. Thirdly, components
are available in different revisions. When relationships amongst components can be
specified with a specific version number, many deployment problems can be averted.
Most deployment tools, including Nix [12] and RPM-Update, already have advanced
versioning and dependency resolution mechanisms.

122 S. Jansen and S. Brinkkemper

To summarize there are four factors that make a the deployment of a software com-
ponent with internal variability complex. Each of these factors is handled by the pre-
sented model using specific modeling techniques and model extensions. These are as
follows:

– States - Components can exist on a system in different incarnations simultanaously.
These incarnations, such as a source incarnation or installed incarnation, have re-
lationships to eachother. States enable the modeling of the complete build and de-
ployment process, by describing such relationships as “to build this component the
source is required first”. The introduction of states leads from Figure 1(a) to 1(b).

– Revisions - Components are generally available in different revisions. Different
revisions have different states, thus leading to a seperate set of states for each com-
ponent revision. Such revisions are modelled in Figure 1(c).

– Features - A component can have variable internal functionality, depending on
parameters that have been bound at several times during the deployment process.
Such points in time are known as binding times. These features can be modelled
using a feature description language. In the model provided, each revision of the
component source leads to a new feature description, since the code and thus the
variability options might have changed. In Figure 1(d) this is displayed by the ad-
dition of feature trees per revision.

– Relationships - Component states have explicit and implicit relationships to ea-
chother, such as the built state of an e-mail client requires both an instance of a
source state that an e-mail client (explicit) and an instance of a running build tool
state with a c++ compiler feature (implicit). These relationships can be further clas-
sified into “requires always” and “requires once” dependencies. An example of a
“requires always” is that a running state instance requires a library at all time dur-
ing the existence of the instance. An example of a “requires once” relationship is
when a build instance requires the compiler only during its instantiation.

To support the presented techniques a component description describes the com-
ponent name, revisons, the revision’s states, and the revision’s feature diagram. This

Black Box
Component

(a) e-mail Client (b) e-mail Client

Source Built Installed RunningPackaged

(c) e-mail Client

Source Built Installed RunningPackaged

Source Built Installed RunningPackaged

Source Built Installed RunningRevision n-1

Revision n

Revision n+1

(d) e-mail Client

Source Built Installed RunningPackaged

Source Built Installed RunningPackaged

Source Built Installed RunningRevision n-1

Revision n

Revision n+1

email
protocol mode

Prod. DebugPop3 Imap

S
BP

F_Prod. F_DebugF_Pop3 F_Imap
0..1 0..1 0..1 0..1

0..0 0..0 0..0 0..0
PP B B1..11..2

2..2

email
protocol mode

Prod. DebugPop3 Imap

S
BP

F_Prod. F_DebugF_Pop3 F_Imap
0..1 0..1 0..1 0..1

0..0 0..0 0..0 0..0
PP B B1..11..2

2..2

email
protocol mode

Prod. DebugPop3 Imap

S
BP

F_Pop3 F_Imap
0..1

0..0
PP 1..2

2..2

Fig. 1. Expanding Model for Software Components

Modelling Deployment Using Feature Descriptions and State Models 123

definition shows that a component has one or more revisions. Each revision consists
of a set of component states, a feature diagram, and a number of feature restrictions
expressed by feature logic. The component states describe the shape or form in which a
component can be present on a system. Examples include built, activated, and running.
Component states can have relationships, such as e-Mail client running always requires
e-Mail client installed or e-Mail client built requires once a running build tool. In the
following sections these component states are described further. The feature diagram
is used to describe the features a revision of a component supplies to the user and is
defined using a feature description language (FDL) [13]. The feature restrictions de-
scribe whether features exclude or require each other. Figure 1 does not show feature
constraints. These constraints are, however, an important part of our model. Features
and FDL will also be explained further in the following sections.

2.1 Component States and Instantiations

The introduction of component states has many reasons. To begin with, component
states force a developer to manage component relationships, restrictions, and deploy-
ment environment from the moment the component is created. Component states allow
for a more detailed specification of component requirements. Some tools, such as Nix
and SOFA, already include state models with the states source, built, installed, and fi-
nally running. Also, component states enable the component developer to specify and
manage the process of how to create a component state instance.

A component state can generally be seen as a portable encapsulation format for a
collection of artefacts, relationships to other component states, and a number of state
instantiations. A state instantiation is a list consisting of actions and requirements that
upon fulfilment of all the requirements performs the list of actions to reach the requested
component state. In the presented model component states belong to one revision. A re-
vision of the component can thus have a set of component states in which it can reside.
The component state definition describes the component state’s name, it’s instantiation
list, and it’s relationships to other component states. The component state has relation-
ships to other component states Requires Always and Excludes. These requirements are
actually expressed as a combination of a component state and provided feature(s). This
allows for a component state to have a relationship with a component state with a spe-
cific feature, such as excludes(eMailClientRunning, Pop3) which can be interpreted as
“this component state cannot exist on a system concurrently with the eMailClientRun-
ning state instance that provides the Pop3 feature”.

Once the developer is forced to consider component states many possibilities arise.
To begin with, the processes of automated building, testing, and deployment can all
be performed using the same component state model. Secondly, since the developer
can describe any type of component [14] the component model described here can be
used to manage different component types, such as Corba or Java components, using
the same model. Thirdly, since component state instances are portable, component state
instances can be distributed amongst different systems. The model allows for derivation
of component dependencies, and can therefore be used to create complete packages
of component state instances to be delivered to customers. Finally, a component state
model allows developers to model and reason about component updates. Component

124 S. Jansen and S. Brinkkemper

states can have relationships with component states from other revisions, thus enabling
modelling of complex patch or update processes. Such processes are, after all, nodes in
the instantiation tree, which represents the full update process.

Previously some criticism was expressed toward a four component state model.
The main reason for this is that evidence was found, during case studies at a number
of software vendors, that there is a need for more states. The software vendor Planon
[15], for instance, has a component state model with seven states, being source, built,
packaged, packaged with license, installed, activated and running. Another software
vendor we encountered applies six states, being the same ones as Planon but without
the packaged with license. This software vendor builds plug-ins for Autocad for which
the software vendor actually adjusts the component state model. The software vendor
first unpacks Autocad from its installation package, then binds some variabilities, and
then packages Autocad with their plug-in. Clearly, a component state is added to the
Autocad state model as well.

A component state description is only a description and does not have any effect on
a system. To create a state instance on a system, a component instantiation is required.
A component state instantiation consists of a list of actions and a list of component
state instances that are required to execute the instantiation and create an instance. The
component instantiation consists of a Requires Once list and an action list. The requires
once list shows what component states and features are required once the instantiation
is activated. The built instantiation will generally require a compiler and a component
state instance of source. The actions are specified as a tuple of (precondition, action,
postcondition). These actions usually are operations on artefacts, such as copy or edit
actions.

To clarify the concepts of component state description, component state instantia-
tion, and component state instance the following example is used. Figure 2 displays a
compilation component, its feature tree, and the binding time of the feature. The feature
tree can be interpreted as follows. The compilation tool has one main feature, that is
bound as soon as the component is instantiated, called “build”. The compilation tool
also has two features that mutually exclude each other (one-of). The next section pro-
vides more information on the feature descriptions at hand. When executed, the compi-
lation tool can build either C++ and Java code. The user binds this feature at run-time,
i.e., when a developer wishes to compile his Java code, he will state at start-up time that
the code to be compiled is written in Java. The R stands for running and corresponds to
the running component state. It is necessary to remind the reader that the figure does not
show anything about the state of the system. The system can contain just the knowledge

Build

C++ Java

R
Installed Running

F_C++ F_Java

1..1

0..1 0..1

0..00..0

R R

Fig. 2. Compilation Component Example

Modelling Deployment Using Feature Descriptions and State Models 125

about this component, but also multiple instances of this components’ states, such as
two installed versions and one running.

For this example a system containing an installed version of this compilation tool
is used. That implies that the component state installed has been instantiated on the
system once. This component state instance can be used to create a running instance.
The relationship for the build tool is “Compilation Tool Revision 1: State Running
Always Requires Compilation Tool Revision 1: State Installed”. The fact that it is a
Requires Always relationship can be derived from the fact that it is the state that requires
another state, and not an instantiation that requires another state. The Requires Always
relationship describes that as long as a component state instance is present on a system,
the required component must be present too.

Once the presence of the installed state instance has been confirmed, we must check
for feature bindings. In this case that means a choice must be made between Java or
C++. Once the right language has been chosen the instantiation of the component state
can be performed. As mentioned before, it is well possible to instantiate a state multiple
times, to do a parallel compilation of different source files, for instance. The aim of the
algorithm described in Section 3 is to create an instantiation tree of component state
instances, instantiations, and features. An instantiation tree for this component revision
is quite simple, since no instances from other components are required and the com-
ponent only has one revision. It will consist of two nodes, with the node “Compilation
Tool Revision 1: Running” depending on “Compilation Tool Revision 1: Installed”.

2.2 Feature Diagrams

To express variability we use the varied feature description language (VFDL). VFDL
is a succinct, natural, and non-redundant language [16] that can be used to express
features of components or products within a product family that contain any number
of other components. The VFDL describes and, or, mutex, xor, and requires feature
relationships. The and relationship is described by using a variation point that states
that each of the features must be selected, by stating “S..S”, where S equals the number
of available features. An xor relationship can be described by introducing a variation
point with two children stating “1..1”, which means that one and only one feature can be
selected. In case an or relationship must be represented a variation point is introduced
stating “1..S”, where S is the number of nodes and 1 means that at least one must
be chosen. An optional relationship is described by adding a variation point is added
stating “0..1” and using F node is added that can either be chosen or be ignored. If two
features exclude each other, they share a top variation point (using “1..1”), and each
feature is optional.

The advantages of using a feature description language to express variability are nu-
merous. FDL allows us to describe complex composition relationships, such as one-of,
optional, and more-of, for features. If we then annotate these features with component
state requirements it enables the creation of large component compositions. This is best
clarified with an example of an e-Mail client that can both support the IMAP and Pop3
protocols (see Figure 3 for its feature tree). The binding time of these features is at
install time. This means that one or both of these protocols can be installed. If these
features have requires relationships with an IMAP and Pop3 component, it becomes

126 S. Jansen and S. Brinkkemper

email

protocol

Pop3 Imap

S

I

F_Pop3 F_Imap

1..1

1..1

0..1 0..1

0..00..0

I I

Fig. 3. e-Mail Client Feature Tree

possible to deploy (and build) only the minimal required set, which is useful for space
restricted systems such as mobile phones. If a user chooses the IMAP protocol, only
the IMAP component needs to be deployed onto his system.

Another advantage of using FDL to describe our feature model is the fact that there
are many tools available to perform calculations and operations on the feature descrip-
tions. More specifically, the techniques developed by van der Storm [17] allow for au-
tomatic composition of components using feature trees. Many of his techniques are
reused here.

To satisfy the research goal of also incorporating binding times, each relationship
between two features, such as one-of and more-of is annotated with a binding time.
Binding times are directly related to component states in our model so each of these
relationships is annotated with a pointer to a component state. Next to that, features have
two lists of requirements attached to them, being requires once and Requires Always.
Features can thus require component state instances and other features.

3 Instantiation Trees

One application of using feature descriptions and component state models is the cre-
ation of instantiation trees. An instantiation tree can model a number of instantiation
sequences to reach a certain state or feature. This section describes algorithm 1, which
creates an instantiation tree from a number of component descriptions and component
state instances.

The algorithm uses some functions that are explained here. The function returnFea-
tureBindings(State) returns all features than can possibly be bound by instantiating the
component state State. In the example shown in Figure 3 the function will return Pop3
and IMAP if called returnFeatureBindings(Installed), which means that these features
must be selected at install time. The function returnFeatureList(RequestedFeatures,
State) returns a subset of the RequestedFeatures with a binding time that lies before
the component state State or is bound during the instantiation of the component state
State. The alreadyInstantiated(State, Features) function checks whether a component
state instance already exists on the system with the features supplied in Features. Not
all features need to be specified, since quite often the requirement relationship is with
one feature only. An example is when someone requests an e-mail client with the Pop3
protocol. That person at that point does not care whether the IMAP protocol is also
included or not.

Modelling Deployment Using Feature Descriptions and State Models 127

The featureSetConsistent(Features, N, State) function applies the techniques of van
der Storm [17]. featureSetConsistent checks whether the feature collection Features
and the feature tree of the component the state State can return a consistent feature
binding. van der Storms technique returns an empty set if it’s impossible to bind these
features, an empty list if this feature binding is correct, and a list of unbound features is
returned if there are still features left unbound. In the case of an empty set the function
featureSetConsistent(Features, N, State) returns a dead node, meaning that this branch
can never be reached. In the case of an empty list the features can be bound correctly,
implying that the component can be instantiated with these feature bindings. Finally,
when a set of unbound features is returned, the function checks whether these feature
bindings are relevant yet. If they should be bound first, this is returned to the tree.
If not, these are simply discarded. The function thus returns a changed node in two
cases, and an unchanged node in one case. The first parameter is a list that contains
the features that have been required up to now. The reason for that is that otherwise it
would be possible to get a conflict, even though this conflict is one that will occur in
the future. The algorithm leaves room for improvement here, but the current interface
excludes conflicts because all features that can be bound must be bound by the user
anyway. The full algorithm is shown in algorithm 1. The main idea is that a new node

Algorithm 1 createTree(State, RequestedFeatures)
new List RequiresOnce = {}, RequiresOnceCurrentInstantiation = {}
new List RequiresAlways = State.RequiresAlways, new Node N
new FeatureList StateBoundFeatures = returnFeatureBindings(State)
new FeatureList FeaturesUpToNow = returnFeatureList(RequestedFeatures, State)
if alreadyInstantiated(State, StateBoundFeatures ∩ RequestedFeatures) then

Return N
end if
if StateBoundFeatures �= {} then

if N �= FeatureSetConsistent(FeaturesUpToNow, N, State) then
return N

end if
for all CurrentFeature ∈ StateBoundFeatures do

RequiresOnce = RequiresOnce ∪ CurrentFeature.RequiresOnce
RequiresAlways = RequiresAlways ∪ CurrentFeature.RequiresAlways

end for
end if
i = 0, j = 0
for all (RAState, RAFeatureList) ∈ RequiresAlways, i + + do

N.RAChild[i] = createTree(RAState, RAFeatureList ∪ RequestedFeatures)
end for
for all Instantiation ∈ State.InstantiationList, j + + do

RequiresOnceCurrentInstantiation = Instantiation.RequiresOnce ∪ RequiresOnce
for all (ROState, ROFeatureList) ∈ RequiresOnceCurrentInstantiation do

N.Instantiation[j].ROChild = createTree(ROState, ROFeatureList ∪ RequestedFeatures)
end for

end for

128 S. Jansen and S. Brinkkemper

is created each time this function is called. This node will have two types of children
being require always children and the more elaborate “Instantiation” children. Each
instantiation will then again have a number of children, which are nodes that are created
once the algorithm is called for the state instances that are required (once) for that
instantiation.

The tree will expand until an instantiation tree is created that shows for each node
what component states must be instantiated first before that node can be created. There
are some prerequisites, however. Some branches will end because the right features
have not been bound. If there is no sequence available due to the fact that insufficient
feature bindings have been specified the user will need to add more features. Also,
if the current system contains no first component instances a problem is encountered,
simply because the tree building cannot end. Another problem is when a component
state diagram includes a circular dependency, this will lead to an endless tree. Thus,
there cannot be circular dependencies.

3.1 An Example: Instantiating the e-Mail Client

The aim of the following example is to clarify the workings of algorithm 1. In
Figure 4 a number of components are shown. The components are an e-Mail client,
a Pop3 protocol implementation component, an IMAP protocol implementation com-
ponent, a binary patch component for the e-Mail client, and a compilation tool that
can compile Java and C++ source files. The e-Mail component is the focal point of
our example and to instantiate the e-Mail client with certain features, all these other
components are required.

e-Mail Component

Source Built Installed Running

Source Built Installed RunningPackaged

email

protocol mode

Prod. DebugPop3 Imap

S

BP

email

protocol mode

Prod. DebugPop3 Imap

S

BI

Pop3 Protocol Component
Source BuiltPop3

IMAP Protocol Component
Source BuiltIMAP

Compilation Component
Build

C++ Java
R

Revision 1

Revision 2

Installed Running

e-Mail Patch R1 to R2 Component
BuiltUpdate

F_JavaF_C++

1..1

0..1 0..1R R

0..0 0..0

F_Prod. F_DebugF_Pop3 F_Imap

F_Prod. F_DebugF_Pop3 F_Imap

0..1 0..1 0..1 0..1

0..1 0..1 0..1 0..1

0..0

0..0

0..0

BBI I

0..0 0..0 0..0 0..0

0..0 0..0 0..0 0..0

PP B B

2..2

1..1

1..1

1..2

1..2

2..2

Fig. 4. Component Definition Examples

Modelling Deployment Using Feature Descriptions and State Models 129

The following example is based on a system that contains two source state instances
(revisions 1 and 2) of the e-Mail client, a source instance of the Pop3 and IMAP protocol
implementation, an installed instance of the compilation tool, and a built state instance
of the update component. The component knowledge in Figure 4 will now be used to
create an instantiation tree for the state running of the second revision of the e-Mail
client component with the feature IMAP.

The example begins with the top node, being “ECR2: Running with IMAP”. In the
table for state dependencies is found that the running instance cannot exist without the
installed instance of the second revision of the e-Mail client. The second node, thus be-
comes the installed node. This node requires the packaged instance of the e-mail client.
At this point the tree building has been straightforward. However, the IMAP feature
inclusion now causes there to be two requirements at instantiation time, being the built
instance of the e-Mail client and the built state instance of the IMAP protocol imple-
mentation. The built state of the second revision of the e-Mail client can be reached in
two ways, being through the source of the second revision (ECR2: Source) or through
the built state of the first revision in combination with the patch. The first instantiation
thus depends on the compilation tool with the Java feature and the source code of the
second revision. The second instantiation depends on the patch and built state of the
first revision of the e-Mail client component. The final instantiation tree can be found
in figure 5.

To illustrate the following section, some practical uses of the tree are explained here.
To begin with, different instantiation sequences can be derived using the instantiation
tree. It is possible, for instance, to first satisfy the right subtree of the instantiation of
“ECR2: Packaged” and then decide which of the two instantiations must be used for
the left side. An example instantiation sequence for “ECR2: Running” thus consists of

IMR1: Built

IMR1: Source

I1

CTR1: Running
with C++

I1

CTR1: Installed

ECR2: Running
with IM

ECR2: Installed

I1

ECR2: Packaged

I1

ECR2: Built

I1 I2

ECR2: SourceCTR1: Running
with Java

I1

CTR1: Installed

PAR1: Built ECR1: Built

P3R1: Source

I1

CTR1: Running
with Java

I1

CTR1: Installed

Fig. 5. Instantiation Tree for Component State ECR2: Running With Pop3

130 S. Jansen and S. Brinkkemper

Table 1. Requires Relationships Between Instantiations and Instances

Ins No. Instantiation Component State with Feature(s)
Requires Once

1 ecR1: Instantiation Build ecR1: State Source
1 ecR1: Instantiation Install ecR1: State Built
1 ecR1: Instantiation Build btR1: State Running with Java
1 ecR1: Feature Pop3 p3R1: State Built
1 ecR1: Feature IMAP imR1: State Built

1 ecR2: Instantiation Build ecR2: State Source
1 ecR2: Instantiation Package ecR2: State Built
1 ecR2: Instantiation Build btR1: State Running with Java
1 ecR2: Instantiation Install ecR2: State Package
1 ecR2: Feature Pop3 p3R1: State Built
1 ecR2: Feature IMAP imR1: State Built

2 ecR2: Feature Pop3 p3R1: State Built
2 ecR2: Feature IMAP imR1: State Built
2 ecR2: Instantiation Build ecR1: State Built
2 ecR2: Instantiation Build upR1: State Built

1 p3R1: Instantiation Install p3R1: State Source
1 p3R1: Instantiation Install btR1: State Running with Java

1 imR1: Instantiation Install imR1: State Source
1 imR1: Instantiation Install btR1: State Running with C++

“CTR1: Running with Java (to build ECR2: built)”, “ECR2: Built”, “CTR1: Running
with C++ (to build IMR1: built)”, “ECR2: Packaged”, “ECR2: Installed”, and finally
“ECR2: Running w IM”. In the following section is demonstrated that it’s possible to
perform some calculations using the properties and prerequisites for state instantiations.

4 Discussion

The main advantage of the presented models, besides correct and consistent deploy-
ment, is the possibility of “what-if” questions. The presented models enable analysis on
the deployment of a component before the deployment of a component state instance,
its dependent features, and state instances. The what-if questions are answered using
a number of properties of the instantiation trees. Excludes relationships are specific
to one state instance instead of components, allowing for components that normally
exclude eachother to still reside on a system simultaneauosly. The tree depth and in-
stantiation descriptions can be used to evaluate deployment effort. Finally, during the
building of the tree, users can be queried about what options they have left open, to
reduce both the number of possible configurations and to give the user insight into the
instantiation order building process.

There is a large advantage of dividing excludes amongst states instead of full com-
ponents, since it imposes a minor restriction compared to full component exclusion.
The example presented in section 3, displays that many components are only required

Modelling Deployment Using Feature Descriptions and State Models 131

once during the deployment process of others. This allows for removal (of the patch,
for instance) after a certain state has been reached. To support this, the requiredConcur-
rently sets have been introduced as a property of the instantiation tree. These are sets
of component state instances that must be present on a system concurrently during the
deployment of a component state instance. When two component state instances are in
a requiredConcurrently set they cannot exclude each other.

Another advantage of the instantiation trees is that the depth of the tree can be used
to estimate the effort a deployment costs. The example instantiation tree in figure 5 has
two instantiations below the “ECR2: Built” state instance. The branch on the left has
less children thus indicating less steps to a final deployment. This tool must be used
with care, however. When an instantiation sequence is shorter, that does not necessarily
mean it takes less deployment effort. Another indirect advantage of composing these
instantiation trees is that during the composition of such a tree, when unbound features
are encountered these can be communicated back to the user. The user can then bind
the feature to see what the results are of that action. The user can then again remove the
feature if it is not to his liking, before actually executing the instantiation sequence.

There are clear links between the methods applied here and the practices of product
lifecycle engineering. This research can be seen as a first step in creating a software
product lifecycle management system that can facilitate and support the processes of
development, release, delivery, and deployment. The following steps in this process are
a distribution architecture and a knowledge management framework. The closeness be-
tween software product management and product data management is further confirmed
by Crnkovic et al. [18].

The main downside of the presented models and methods is that the data entered by the
component developers is crucial for the correct functioning of the deployment algorithms,
since “garbage in results into garbage out”. As discussed in the previous section, however,
there are many possibilities for adding information to the software knowledge base. To
begin with, automatic feedback can be used to report back to a supplier of a component
after the deployment of that component [19]. This feedback can then be used to test for
excludes on external products that a software vendor can never discover independently.

Feature descriptions are rather misused here, since they are generally used to de-
scribe high-level application requirements and features [13]. The framework, however,
uses feature descriptions to model the binding times of features, the requirements of
components, and the relationships between the features. We firmly believe that feature
descriptions form the solution to many of the complexities related to component config-
uration and deployment. Feature descriptions can be used to model binding times and
show the relationships between features and other required instances. Feature logic and
restrictions allow for complex relations to be modelled and simplified, thus enabling al-
gorithms such as shown in algorithm 1. The final question that needs to be answered is
whether a software knowledge base really improves the processes of release, delivery,
and deployment. There are four facts that point to that direction.

– Product data management improves the release and delivery of other products
[20]. Since software production processes share many similarities with other pro-
duction processes [18], software release, delivery, and deployment can also be
improved.

132 S. Jansen and S. Brinkkemper

– Since the current trend in the software market is mass customisation, much of the
information gathered in the development stages of the product can be reused at later
stages during implementation at the customer and customisation phases.

– Case studies [19] [15] show that centrally storing knowledge leads to reduced de-
livery effort.

– The ability to present “what-if” questions to a local software knowledge base
that is connected to multiple component sources can increase the reliability of the
component deployment process. These questions enable a system manager to more
explicitly predict what changes can be made to a system and what features can be
provided within a certain configuration of components.

These facts show that managing knowledge about software explicitly and mak-
ing it available to all involved parties improves release, delivery, and deployment
processes.

5 Future Work and Conclusions

Currently the models have been implemented in Prolog, however, to fully apply the
models in an industrial setting, a new implementation technology must be chosen with
the support of cross platform compilers. We are hoping to apply the tools in a practical
situation in the context of a case study. To avoid reinventing the wheel and to standardize
the models, the applicability and feasibility of the OMG specifications for reusable
assets [21] and IT portfolio management [22] must be evaluated for the current models.
The current algorithm blindly builds trees that can explode in complexity quite quickly.
There are many opportunities for reuse and further research is required in that area
to reduce the complexity of these instantiation trees. Also, the representation of the
software component knowledge must be compared to other methods [8] to store and
share software component knowledge.

This paper establishes a relationship between component state models and fea-
ture descriptions enabling reasoning about the deployment of a component or compo-
nent set without actually deploying the software. An algorithm is provided that can
build instantiation instantiation trees to determine the deployment order of compo-
nents. These trees can be used to answer “what-if” questions about the deployment
of a component or set of components. The research has shown that both feature de-
scriptions and a component state model can be used to create a software knowledge
base that stores information about components and their context. The knowledge used
to achieve this, however, relies on information provided by developers and users of the
components.

Acknowledgements. The authors thank Vedran Bilanovic and the Trace team for their
many inspiring ideas that contributed to this paper. Also, the anonymous reviewers did
a great job in reviewing this paper and giving highly constructive criticism. Finally, The
authors thank Tijs van der Storm for providing the Prolog implementation of FDL to
BDD conversion and partial evaluation functions that made the prototype implementa-
tion so much quicker.

Modelling Deployment Using Feature Descriptions and State Models 133

References

1. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Addison-
Wesley Longman Publishing Co., Inc. (2002)

2. Hall, R.S., Heimbigner, D., Wolf, A.L.: A cooperative approach to support software deploy-
ment using the software dock. In: ICSE. (1999)

3. Jaring, M., Bosch, J.: Representing variability in software product lines: A case study. In:
Second Product Line Conference (SPLC-2),San Diego CA, August 19-22. (2002)

4. Bosch, J., Högström, M.: Product instantiation in software product lines: A case study. In:
LNCS. Volume 2177. (2001) 147

5. Jansen, S., Brinkkemper, S., Ballintijn, G.: A process framework and typology for software
product updaters. In: Ninth European Conference on Software Maintenance and Reengineer-
ing, IEEE (2005) 265–274

6. Dolstra, E., Visser, E., de Jonge, M.: Imposing a memory management discipline on software
deployment. In: IEEE Workshop on Software Engineering (ICSE’04), IEEE (2004)

7. Hnetynka, P.: Component model for unified deployment of distributed component-based
software. In: Tech. Report No. 2004/4, Charles University, Prague. (2004)

8. Hall, R., Heimbigner, D., Wolf, A.: Specifying the deployable software description format
in xml. In: Technical Report CU-SERL-207-99, University of Colorado SERL. (1999)

9. Object Management Group: Deployment and Configuration of Component-based Distributed
Applications Specification. In: OMG document ptc03-07-08. (2003)

10. Dolstra, E., Florijn, G., de Jonge, M., Visser, E.: Capturing timeline variability with transpar-
ent configuration environments. In Bosch, J., Knauber, P., eds.: IEEE Workshop on Software
Variability Management (SVM’03), Portland, Oregon, IEEE (2003)

11. Carzaniga, A., Fuggetta, A., Hall, R., van der Hoek, A., Heimbigner, D., Wolf, A.: A char-
acterization framework for software deployment technologies. In: Technical Report CU-CS-
857-98, Dept. of Computer Science, University of Colorado. (1998)

12. Dolstra, E., de Jonge, M., Visser, E.: Nix: A safe and policy-free system for software deploy-
ment. In Damon, L., ed.: 18th Large Installation System Administration Conference (LISA
’04), Atlanta, Georgia, USA, USENIX (2004) 79–92

13. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain analysis
feasibility study. Technical Report CMU/SEI-90-TR-21, Pittsburgh, PA (1990)

14. Clegg, S.: Evolution in extensible component-based systems. In: Master Thesis. (2003)
15. Jansen, S.: Software Release and Deployment at Planon: a case study report. In: Technical

Report CWI, SEN-E0504. (2005)
16. Bontemps, Y., Heymans, P., Schobbens, P.Y., Trigaux, J.C.: Semantics of feature diagrams.

In Männistö, T., Bosch, J., eds.: Proc. of Workshop on Software Variability Management for
Product Derivation (Towards Tool Support), Boston (2004)

17. van der Storm, T.: Variability and component composition. In: Software Reuse: Methods,
Techniques and Tools: 8th International Conference (ICSR-8). LNCS, Springer (2004)

18. Ivica Crnkovic, U.A., Dahlqvist, A.P.: Implementing and integrating product data manage-
ment and software configuration management, Artech House Publishers (2003)

19. Jansen, S., Brinkkemper, S., Ballintijn, G., van Nieuwland, A.: Integrated development and
maintenance of software products to support efficient updating of customer configurations: A
case study in mass market erp software. In: Proceedings of the 21st International Conference
on Software Maintenance, IEEE (2005)

20. Helms, R.W.: Product data management as enabler for concurent engineering, ph.d. disser-
tation. In: Eindhoven University of Technology press. (2002)

21. Object Management Group: Reusable Asset Specification. (2004)
22. Object Management Group: IT Portfolio Management Specification. (2004)

J2EE Packaging, Deployment and

Reconfiguration Using a General
Component Model

Takoua Abdellatif1,2, Jakub Kornaś2, and Jean-Bernard Stefani2

1 Bull SA
2 LSR-IMAG laboratory (CNRS, INPG, UJF) - INRIA - Sardes project

INRIA Rhône-Alpes, 655 av. de l’Europe, F-38334 Saint-Ismier Cedex, France
Firstname.Lastname@inrialpes.fr

Abstract. This paper describes a case study of enhancing the deploy-
ment process in J2EE application servers (AS), and more precisely the
services building such servers and the applications executing on the
servers. We show how, by following a component-based approach to the
design of the server, we address the versioning and licensing issues raised
by the fact that a J2EE server is built out of heterogeneous, third-party
software.

As a proof of concept, we present a re-engineered version of the JOnAS
J2EE server implemented using Fractal, a component model providing
flexible control capabilities and hierarchical composition. We describe
how Fractal packaging together with a JOnAS-specific deployment sys-
tem are used to deploy and reconfigure our Fractal-based version of the
JOnAS server. Finally, we show how the same model and packaging can
be used to deploy applications executing on the server.

1 Introduction

J2EE [1] application servers are complex, service-oriented architectures. Existing
open-source solutions usually implement services as wrappers of legacy code. For
example, the JOnAS [2] application server1 contains a Web service wrapping
either Tomcat [3] or Jetty [4], a transaction service that wraps JOTM [5], etc.
Since services are developed by third parties, it is necessary to allow deploying
and updating them independently. Indeed, the application server must both
allow choosing between different licenses at deployment time, and allow services
to be updated when a new version is available.

Service update issues are not handled by current J2EE specifications. The
JSR88 [6] focuses on the deployment of applications, but not on the deployment
of the middleware. JSR77 [7] defines an information model that must be exposed
to managers in charge of monitoring and controlling the system. This model
does not contain the necessary information for dynamically updating services.
1 JOnAS is an open-source application server freely available under an LGPL license

at http://jonas.objectweb.org

A. Dearle and S. Eisenbach (Eds.): CD 2005, LNCS 3798, pp. 134–148, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

J2EE Packaging, Deployment and Reconfiguration 135

This lack of specification regarding the middleware management (e.g. licensing,
versioning) is currently left to the server providers.

Updating a service code at runtime (i.e. without stopping the server) involves
three main tasks: (i) isolation of services as independent packages, (ii) deploy-
ment and redeployment of services, and (iii) handling service dependencies and
state at runtime. Regarding the packaging part, the main issue is to handle the
dependency between the different packages and the compatibility between code
versions they contain. Regarding the deployment and redeployment part, each
service needs to have an independent life cycle, in particular it must be deploy-
able independently from other services. Finally, handling the running service
state implies taking into account the service’s stateful data and dependencies
between the updated service and other running services.

Issues raised in point (iii) necessitate reconsidering the middleware archi-
tecture. Indeed, service dependencies must be explicit so that when a service is
updated, the behavior of dependent services can be controlled. This has been the
purpose of previous work [8] on JOnAS, which led to the JonasALaCarte pro-
totype. JonasALaCarte adopts a component-based architecture, implemented
using the Fractal [9] component model. Fractal allows building hierarchical
architectures (using composite components), where components communicate
through explicit bindings. JonasALaCarte uses Fractal components to wrap ser-
vices, thus making them independent units of configuration and deployment with
an independent lifecycle.

This paper focuses on points (i) and (ii), i.e. the packaging and deployment
parts. We show that we can adopt the same component model (Fractal) to imple-
ment the service packaging and the deployment infrastructure. Service packages
are represented by Fractal components and dependencies between packages are
expressed using Fractal bindings. Moreover, the deployment infrastructure is im-
plemented using Fractal components, which allows dynamically plugging various
deployment policies adapted to the deployment environment (e.g. centralized,
clusters, grids, etc.).

Furthermore, we show that our deployment tool and packaging model is also
applicable to J2EE applications. Unifying the packaging and deployment process
thanks to the Fractal component model allows for abstracting the management
tasks (packaging, deployment and system adaptation) to a configuration of Frac-
tal components. Regarding existent solutions in open source application servers,
our management solution is uniform: we use the same model for the packag-
ing and the AS execution at runtime. Moreover, we adopt the same package
structure for the middleware services and the J2EE applications.

The main innovative aspects of our work are that: we allow for versioning
and redeployment of services building the JOnAS J2EE server, we solve the
possible licensing issues by packaging each JOnAS service independently, we use
a uniform component model from the package level, through the AS level, to
the application level, and finally, in our solution, dependencies between JOnAS
services are made explicit and map on package dependencies.

136 T. Abdellatif, J. Kornaś, and J.-B. Stefani

The rest of the paper is structured as follows: in section 2 we briefly intro-
duce the Fractal component model and Fractal packaging. Section 3 describes the
drawbacks of JOnAS in terms of deployment and presents how, by re-engineering
JOnAS, we have obtained JonasALaCarte, a Fractal-based version of the server.
Sections 4 and 5 present how components building the JonasALaCarte are pack-
aged, deployed and redeployed. In section 6 we describe the related work before
concluding the article in section 7.

2 Fractal Component Model

In this section we briefly describe the Fractal component model: the principles
underlying the model, the Fractal ADL (architecture description language) and
Fractal packaging.

2.1 Fractal Principles

Fractal [10] is a general component model. It distinguishes two types of compo-
nents: primitive and composite. Primitive components are standard Java classes
that conform to certain coding conventions. Composite components encapsulate
a group of primitive and/or composite components.

A Fractal component is made of two parts: a controller part, which exposes
the component’s interfaces and comprises controller and interceptor objects, and
a content part, which can be either a standard Java class in case of a primitive
component, or other components (called subcomponents), in case of a composite
component.

Fig. 1. An example Fractal architecture

Similar to other component models, Fractal distinguishes server interfaces,
which correspond to provided services, and client interfaces, which correspond
to required services. Moreover, Fractal supports both primitive bindings (i.e.
Java references) and composite bindings which are built out of a set of primitive
bindings and binding components (stubs, skeletons, adapters, etc).

Figure 1 illustrates the different constructs in a typical Fractal component
architecture. The gray boxes denote the controller part of the components. Ar-
rows correspond to bindings; the interfaces appearing on the top of a component

J2EE Packaging, Deployment and Reconfiguration 137

represent the controllers, the interfaces on the left are server interfaces and on
the right are client interfaces.

The construction of a system with Fractal component yields a dynamically
adaptable system where the component is the unit of configuration, deployment
and reconfiguration. The system architecture, written in ADL, is expressed in
terms of the component model, exhibiting bindings between components and
containment relationships. These properties are specific to Fractal, compared to
other component models, as explained more in detail in [10]. For these reasons
we chose to build our new AS, as well as the deployment system itself, using
Fractal.

2.2 Fractal ADL

Fractal Architecture Description Language (ADL) is a mean to define architec-
tures of Fractal applications. It is XML-based, and each description of the Fractal
architecture is stored in a .fractal file. A sample ADL description of a Fractal
component is represented in figure 2. This example corresponds to an ADL de-
scription of a component named WebContainer. This component has four client
(required) interfaces, named jmx, security, jprop and lmgr, implemented by
the following Java interfaces: JmxServiceItf, SecurityServiceItf, JProperty
and LManager. The WebContainer component also has one server (provided)
interface, named service and implemented by a Java interface ServiceItf. Fi-
nally, the implementation of this component’s functional (content) part is pro-
vided by a Java class called WebContainerWrapper. WebContainer can be bound
to other components, it can also be a subcomponent of some other component.

<definition name="WebContainer">
<interface name="jmx" role="client" signature="JmxServiceItf"/>
<interface name="security" role="client" signature="SecurityServiceItf"/>
<interface name="jprop" role="client" signature="JProperty"/>
<interface name="lmgr" role="client" signature="LManager"/>
<interface name="service" role="server" signature="ServiceItf"/>
<content class="WebContainerWrapper"/>

</definition>

Fig. 2. WebContainer.fractal: A sample ADL description of a Fractal component

Fractal ADL has been designed to be open and extensible: it is made of
several units, where each unit defines syntax for one architectural aspect (like
interface, binding, attribute etc). Developers are free to define their own units.
At deployment time, an ADL description of the application is parsed by a factory
tool. This factory tool can also be extended to take into account added units.

2.3 Fractal Packaging

Fractal packages are used to deploy Fractal applications. These packages are
stored in package repositories, which can be of various kinds, such as file

138 T. Abdellatif, J. Kornaś, and J.-B. Stefani

systems, databases etc. Each Fractal package A.far is a Fractal component A
in a serialized form, which is described by a Fractal ADL definition A.fractal
contained in the package itself. Such a definition of packages unifies the package
and component concepts, in the sense that a package is just a special form of a
component. All the properties of Fractal packages are deduced from this iden-
tity relation: for example, Fractal packages can contain sub-packages, just like
Fractal components can contain subcomponents. Figure 3 illustrates an example
of Fractal packages, including their metadata.

package JonasALaCArte.far
JonasALaCarte.fractal:

<definition name="JonasALaCarte" version="1.0">
<component name="WebContainer" definition="WebContainer"/>
...

</definition>
ow_jonasbootstrap.jar
... other, non ADL files ...

package WebContainer.far
WebContainer.fractal:

<definition name="WebContainer" version="1.0">
<interface name="jmx" role="client"

signature="JmxServiceItf"/>
<interface name="security" role="client"

signature="SecurityServiceItf"/>
...

</definition>
catalina.jar
tomcat-coyote.jar
... other, non ADL files ...

package JMX.far
JMX.fractal:

<definition name="JMX" version="1.0">
<interface name="service" role="server"

signature="JmxServiceItf"/>
...

</definition>
jmx.jar
... other, non ADL files ...

Fig. 3. An example of Fractal package files

Dependencies between Fractal components can only be of two sorts: depen-
dencies through component encapsulation, and dependencies through compo-
nent interfaces. These two dependency types give two dependency types between
Fractal packages : (i) a containment dependency gives a strong dependency be-
tween two packages (in the example presented in figure 3, the containment of
WebContainer inside JonasALaCarte, gives a strong dependency between pack-
age JonasALaCarte.far and package WebContainer.far) (ii) a dependency
through interfaces gives a loose dependency between packages (in the example
presented in figure 3, the client interface jmx gives a loose dependency between
package WebContainer.far and any package that provides the JmxServiceItf
interface), which in the example presented in figure 3 is the JMX.far package.

J2EE Packaging, Deployment and Reconfiguration 139

3 Re-engineering JOnAS Using Fractal

In this section we first briefly describe the JOnAS J2EE server. Then we outline
the drawbacks of the existing implementation of JOnAS focusing mainly on
deployment, licensing and updates issues. Finally we present our re-engineered,
Fractal-based version of the server which we call JonasALaCarte. In the next
two sections we explain how this re-engineering work allows us to address all the
deployment-related issues of the ”standard” server.

3.1 The JOnAS Server

JOnAS is an open source J2EE application server. It is developed within the
ObjectWeb Consortium [11]. The server’s role is to host J2EE-compliant ap-
plications by providing them with an execution environment that offers a well-
defined set of non-functional services (persistency, transactions, security, etc.).
To achieve that, the server integrates various software from different providers,
such as the Apache Software Foundation [12], the ObjectWeb consortium etc.
This heterogeneous software builds the services that offer non-functional prop-
erties to the J2EE applications. Even though each software providing differ-
ent non-functional aspect could be considered as an independent component
with explicitly defined relations to other components, JOnAS does not employ a
component-based approach in its design. On the contrary, JOnAS is a monolithic
block of code in the sense that the relations between the third-party ”compo-
nents” integrated by the server are not explicit - they are hard-coded in JOnAS’
classes. Such an approach has major drawbacks in terms of both architecture
and deployment. In terms of software architecture, the non-component-based
approach makes the internals of JOnAS difficult to understand and the server
difficult to manage at runtime. In terms of deployment, it does not allow the
redeployment of only parts of the server - since JOnAS services are not compo-
nents, they cannot have a life cycle independent of the life cycle of the server.
Therefore, it is impossible to, for example, redeploy JOnAS services indepen-
dently. Moreover, it is impossible to address the licensing issues raised by the
fact that for certain third-party components it can be illegal to package and
distribute them together with other third-party components. To address these
issues we have re-engineered the JOnAS server to obtain a component-based
version of it.

3.2 Fractalized JOnAS

JonasALaCarte [8] is our re-engineered, component-based version of the JOnAS
server. In our re-engineering work we have adopted the Fractal component model.

As a result of our re-engineering work, all JOnAS services and management
entities became Fractal components. As illustrated in figure 4, each instance
of the JonasALaCarte server is therefore a composite component encapsulat-
ing a set of interacting services (primitive components). The latter are bound
using Fractal bindings. The first advantage of such an approach, compared to

140 T. Abdellatif, J. Kornaś, and J.-B. Stefani

traditional JOnAS server, is that the architecture of the server is explicit - con-
nections between services are well defined, services building the server can be
managed thanks to the control interfaces of the components that wrap these ser-
vices. Second advantage is that components building the server can be packaged,
deployed and redeployed independently. Note, however, that for most of these
components it is impossible to have two versions of them running in a single
application server. This is due to the way these components are implemented.

Fig. 4. Architecture of the JonasALaCarte J2EE servers

We have implemented a JSR77 lifecycle controller of each deployable Frac-
tal component (in our case the services and the management components) as a
Fractal controller. Figure 5 presents the JSR77 automate. When a Fractal com-
ponent is deployed, its state is set to Starting. Each service component asks the
Loader Manager for its class loader, performs some initialization operations and
starts. If the service starting succeeds, its lifecycle controller is positioned to the
Running state; otherwise the latter is set to Failed. To stop a service its state
is set to Stopping and the service performs some state storage and clean-up. If
these operations succeed, the service sets its state to Stopped, otherwise it is set
within a configurable time-out to Failed.

4 Packaging

In this section we describe how Fractal packaging applies in the context of the
Fractalized JOnAS server.

Fractalized JOnAS services are fractal components, therefore packages used
for storage and deployment of these services are Fractal packages (serialized
forms of Fractal components).

As stated in section 2.3, package-level dependencies between services build-
ing the server are the same as runtime-level dependencies, and are therefore

J2EE Packaging, Deployment and Reconfiguration 141

Fig. 5. JSR77 component lifecycle automate

expressed in the same ADL file. However, this file is enriched with versioning in-
formation needed by the package-management system. This information is used
to solve package dependency and compatibility issues.

In addition to the .fractal file, each package contains also the .jar files
that provide the actual code needed by the services at execution.

As can be seen, dependencies between packages correspond to the run-
time dependencies between services building the server. Therefore, the
WebContainer-1.0.far package depends on any package providing the
JmxServiceItf interface, any package providing the SecurityServiceItf in-
terface etc. These package dependencies are resolved by the JonasALaCarte de-
ployment mechanism.

package WebContainer-1.0.far
WebContainer.fractal:

<definition name="org.objectweb.jonasALaCarte.WebContainer"
version="1.0">
<interface name="jmx" role="client"

signature="org.objectweb.jonas.jmx.JmxServiceItf"
compatibility="[1.0, *]"/>

<interface name="security" role="client"
signature="org.objectweb.jonas.security.SecurityServiceItf"
compatibility="[1.0, *]"/>

<interface name="jprop" role="client"
signature="org.objectweb.jonasALaCarte.configurator.JProperty"
compatibility="[1.0, *]"/>

<interface name="lmgr" role="client"
signature="org.objectweb.jonasALaCarte.loaderManager.LManager"
compatibility="[1.0, *]"/>

<interface name="service" role="server"
signature="org.objectweb.jonas.service.ServiceItf"/>

<content
class="org.objectweb.jonas.web.wrapper.catalina55.WebContainerWrapper"/>
... the rest of the ADL file

</definition>
catalina.jar
tomcat-coyote.jar
... other, non ADL files ...

Fig. 6. The content, including metadata, of the WebContainer-1.0.far package

142 T. Abdellatif, J. Kornaś, and J.-B. Stefani

The J2EE modules (WARs, EARs, RARs and EJBJars), as defined in JSR88
are wrapped as Fractal components. The ADL files in the .far archives describe
the module version and the dependencies between the module and the services
where it will be deployed. The deployment manager checks the code version
compatibility. On the other hand, we express in ADLs, the dependencies between
the modules themselves. For example, it is possible that two EARs archives need
to share the same RARs. Note that JSR88 specification does not address the
dependency between modules. We offer this feature thanks to our packaging
structure without breaking the specification. Again, adopting the same package
structure for both applications and middleware allows using the same APIs and
management tools.

Since packages are only units of code distribution, they do not provide in-
formation on how the code contained in a package should be loaded at runtime,
that is information relative to class loading. This is important in the context
of JOnAS, since the server employs a rather complex class-loading hierarchy,
allowing for example for run-time versioning of code. We believe that this class
loading hierarchy is orthogonal to the code packaging - it is the deployment tool’s
role to have enough knowledge and means to create class loader hierarchies for
the packages it obtains from package repositories. Thus, as will be explained in
the next section, our deployment tool creates a proper class loader hierarchy for
JOnAS.

5 Deployment and Updates

This section describes how Fractal packages containing the JOnAS services are
deployed by our deployment tool and how JOnAS services can be redeployed
without the need to redeploy the whole server. The first part of this section
describes the architecture of the JonasALaCarte deployment tool, the second
part outlines the properties of this deployment tool and finally the third part
presents a redeployment use case.

5.1 Architecture

As illustrated in figure 7, our deployment tool is built of the following com-
ponents: The Deployment Manager, the Repository and the Loader Manager.
The role of the Deployment Manager is to parse the package meta-data, to iden-
tify the dependencies between the packages and check package availability and
version compatibility. If no problem (lack of necessary packages, package incom-
patibility, etc.) is detected, the deployment manager extracts the content of .far
packages (middleware or application ones) and asks the Repository component
to store locally the content of these packages. Various storage policies can be
implemented. In our current implementation, the Repository component stores
the contents of packages in a folder structure equivalent to the one defined by
JOnAS. It is possible to have other storage semantics or other storage support
like data bases for persistence. The deployment manager asks the Initiator

J2EE Packaging, Deployment and Reconfiguration 143

Fig. 7. Uniform Fractal-based representation of packages, the deployment infrastruc-

ture and the middleware

component to deploy services. The latter invokes then the start interfaces on the
different service components.

The Initiator component polls the service lifecycle states and sends a no-
tification to the deployment manager if a service deployment fails. As a future
work we plan to implement some repair deployment policies as Fractal compo-
nents. Note that currently the same protocol is used for the deployment of J2EE
applications [13].

5.2 Properties

Our deployment architecture has three main properties:

Separation of deployment policies from deployment mechanisms by
adopting a component-based architecture. In our context, the deployment poli-
cies define (i) how packages are stored, (ii) how dependencies between packages
are handled, and (iii) how class loaders are created. Implementing these three
concerns using separate components communicating through well defined inter-
faces allows modifying the behavior of each component independently from the
others. For example, our existing implementation of the Loader Manager com-
ponent creates a class loader hierarchy equivalent to the one used in JOnAS [14].
Another possible implementation could use Module Loader [15] as a class loading
mechanism, and thus allow for the usage of any of the module loader’s search
policies. Finally, an implementation of the Loader Manager could map directly
the packaged components, based on their metadata, on the namespaces provided
by class loaders as we explain it in [16].

144 T. Abdellatif, J. Kornaś, and J.-B. Stefani

Unification of the packaging and the deployment tools by adopting
the component model used to build the middleware itself. Adopting the same
component model allows abstracting the management of the different phases
to the configuration of Fractal components. This unification allows for using
the same API to monitor and manage the application server lifecycle steps:
from packaging to runtime execution. Currently, we enhanced the fractal ex-
plorer tool [17] to offer a common GUI for these steps. Figure 8 illustrates the
navigation through Fractal packages of the server, the deployment components
and the middleware services. Later in this section we explain in detail how this
GUI tool allows for management and redeployment of components building the
JonasALaCarte server.

Unification of the packaging and the deployment of J2EE appli-
cations and middleware. To achieve this goal, we adopt the same package
structure and deployment tool for both middleware and applications. Indeed,
the middleware services as well as J2EE applications are packaged as Fractal
packages (.fars).

5.3 Redeployment Use Case

The Deployment Manager allows for redeployment of services. For that it ob-
tains the new far from the package repository, asks the Initiator to store
the far’s content locally and calls the deploy interface of the Initiator com-
ponent. The Initiator calls redeploy interface of the service. The service is
then stopped together with all the services that use it. The service component
subject to redeployment asks the Loader Manager for its new class loader and
restarts.

The redeployment of JonasALaCarte services can be performed using the
Fractal Explorer tool that we have extended for our needs. Figure 8 illustrates an
example of redeploying the WebContainer component. Figure 8a presents the ini-
tial state of the redeployment operation. On the left we can see all the subcompo-
nents of the JonasALaCarte composite component, including the WebContainer
component. We can also see the redeployment-controller, a Fractal controller
specific to JonasALaCarte, responsible for initiating the redeployment of ser-
vices. In figure 8b we see that the administrator chose the WebContainer com-
ponent for redeployment. At this stage, the deployment manager queries the
(possibly remote) package repository for the available versions of .far files con-
taining the WebContainer component. As can be seen in figure 8c, two versions
of this component are available and the administrator decides to deploy the ”2.0”
version of the component. This example shows how we achieve our goal of being
capable to redeploy the services building the JOnAS server. Moreover, since ser-
vices are packaged independently, we also solve the possible licensing issues. It
has to be mentioned that redeployment of the WebContainer also involves the
redeployment of all war and ear files.

In the use case described above we do not address the state preservation
issue. The capacity to provide such state preservation depends on the properties
of legacy software building the server.

J2EE Packaging, Deployment and Reconfiguration 145

(a) (b)

(c)

Fig. 8. Example of JonasALaCarte service redeployment using Fractal Explorer

6 Related Work

The related work can be divided into two types of systems: the J2EE application
servers and the generic, “Module” systems for Java.

6.1 J2EE Servers

In JBoss [18], the architecture of the AS is completely based on JMX. A JMX
agent represents the middleware kernel. The services are implemented as MBeans
and are deployed using the MLet service. In JBoss, some tools are built on top of
JMX to express the dependencies between MBeans and thus between services.
JBoss adopts different packaging structures for the application deployment mod-
ules (JARs, RARs, EARs) and the service deployment modules (SARs). Con-
sequently, there is no uniform package structure for the middleware and the

146 T. Abdellatif, J. Kornaś, and J.-B. Stefani

application parts. MBeans architecture unit is not exploited for the packaging
and the deployment. Regarding JBoss, JonasALaCarte is based on a uniform
model, the Fractal component model, for the packaging, the deployment and
the middleware architecture. Furthermore, we are not aware of the dynamic
versioning feature in JBoss, which we provide in JonasALaCarte.

Geronimo [19] developers are aware of the JMX limitation to uniform the
complexity of the system. In fact, relation betweens the MBeans and the com-
munication between them are not in the scope of the JMX model. Geronimo
adopts instead an IoC [20] kernel based architecture. Inversion of Control, also
called dependency injection, is a pattern supported by IoC containers and frame-
works to achieve separation of concerns. Components inside the container can
isolate dependencies and have these dependencies injected into them during ex-
ecution/deployment. Components inside Geronimo are called GBeans and are
the manageable units in Geronimo. The deployment process is separated into
the user part (the modules creation) and the execution part (the configurations
creation). During deployment, one or more modules are packaged together into a
configuration. Internally, Geronimo sees only configurations, as packaged deploy-
ment of one or more GBeans. Like Fractal ADLs in JonasALaCarte, a Geron-
imo deployment plan is the Geronimo-specific meta-data. Like in Geronimo, our
packaging and deployment tools aim at unifying the complex system by adopt-
ing the same structure of the deployment modules and deployment plans for the
middleware and the J2EE applications. However, in JonasALaCarte, we adopt
the same model for the packaging, the deployment tools and the middleware im-
plementation itself. The administrator handles the packages, the management
units and the middleware as Fractal components.

6.2 “Module” Systems

OSGi [21] allows the deployment of Java applications packaged in a form of
bundles and runtime updates of those bundles. A bundle contains jar files and
metadata describing those files (versioning etc.). The OSGi platform’s role is to
manage the lifecycle of bundles (deployment, activation, updates etc.). One of the
contributions brought by the OSGi to Java community is taking jar versioning
into account. The main drawback of OSGi compared to Fractal, and therefore
to our solution, is that it does not provide an explicit notion of application’s
architecture. Moreover, OSGi services are not hierarchical and provide no control
interfaces.

MJ [22] is a module system for Java. Its primary goal is to solve the issue
of unexpected interactions between software components raised by large Java
systems. To achieve it, MJ uses multiple class loaders but provides a high-level
interface to manage these class loaders. However, MJ does not address the issue
of redeployment of modules. With regards to MJ, our solution focuses mainly
on the packaging, deployment and updates of services building such large Java
systems, and J2EE servers in particular. The unexpected interactions between
services do not occur in JonasALaCarte since we reuse the runtime separation
of services provided by the standard hierarchy of JOnAS class loaders.

J2EE Packaging, Deployment and Reconfiguration 147

7 Conclusion

In this paper we addressed the issue of service versioning and licensing in the
context of J2EE application servers. We presented the use case of updating the
Web container service in JOnAS J2EE server at runtime. To allow redeploy-
ment, services are packaged independently and a middleware deployment tool is
used to instantiate them. Furthermore, we reconsidered the architecture of the
JOnAS application server since updating a service requires that each service has
a lifecycle independent from the lifecycle of the application server. We selected
the Fractal component model for the redesign and the reimplementation of the
JOnAS application server and its management units. This choice was driven by
the fact that construction of a system with the Fractal component model yields a
dynamically adaptable system where the components are units of configuration,
deployment and reconfiguration.

We illustrated that by adopting a component-based approach to package the
services, to build the deployment tool and to architecture the middleware itself
we achieve our versioning goal in a flexible and practical way. By flexibility we
understand the ability to change the deployment policies, the class loading strate-
gies or the package storage backends by replacing the correspondent component
with a new component implementing the new policy. Our solution is practical
because by unifying the implementation of the packages, the deployment tool
and the middleware, the management tasks from packaging to the middleware
monitoring and adaptation are abstracted to the configuration of Fractal com-
ponents. The manager deals with the same API for the administration of the
application server in its different phases: from packaging to the dynamic adap-
tation at execution time. We illustrated in this paper how an administrator can
navigate through the same graphical interface (Fractal Explorer) to explore a
service package, to perform a redeployment operation and to check the success
of the service redeployment.

Currently, we implemented the packaging and the deployment infrastructure
for the middleware services. In future, we plan to apply our solution to the
packaging and the deployment of the J2EE applications, as we explained in this
paper. We also aim at unifying the management of the J2EE middleware and the
applications. Finally, we plan to enhance the deployment process by developing
new deployment policies, such as transactions, security and failure recovery, as
Fractal components.

References

1. J2EE: Java 2 Platform, Enterprise Edition (2002) http://java.sun.

com/j2ee/docs.html.

2. JOnAS: Java Open Application Server (2005) http://jonas.objectweb.org/.

3. Apache Tomcat (2005) http://jakarta.apache.org/tomcat/.

4. Jetty Java HTTP Servlet Server (2005) http://jetty.mortbay.org/jetty/.

5. Java Open Transaction Manager (2005) http://jotm.objectweb.org/.

148 T. Abdellatif, J. Kornaś, and J.-B. Stefani

6. J2EE Deployment Specification (JSR88) (2005) http://jcp.org/jsr/detail/

88.jsp.

7. J2EE Management Specification (JSR77) (2005) http://jcp.org/jsr/detail/

77.jsp.

8. Abdellatif, T.: Enhancing the Management of a J2EE Application Server using a
Component-Based Architecture. In: Proceeding of the 31st EUROMICRO Confer-
ence (EUROMICRO’2005), Porto, Portugal (2005)

9. Bruneton, E., Coupaye, T., Stefani, J.B.: The Fractal Composition Framework
(2002) http://www.objectweb.org.

10. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: An Open Com-
ponent Model and its Support in Java. In: Proceedings of the International Sympo-
sium on Component-based Software Engineering (CBSE’2004), Edinburgh, Scot-
land (2004)

11. The ObjectWeb Consortium (2005) http://objectweb.org.
12. The Apache Software Foundation (2005) http://apache.org.
13. Exertier, F. J2ee deployment: The jonas case study. CoRR cs.NI/0411054 (2004)
14. JOnAS class loader hierarchy (2004) http://jonas.objectweb.org/current/doc/.
15. Hall, R.S. A Policy-Driven Class Loader to Support Deployment in Extensible

Frameworks. In: Proceedings of the International Conference on Component De-
ployment (CD’2004), Edinburgh, Scotland (2004)

16. Kornas, J., Leclercq, M., Quema, V., Stefani, J.B.: Support for evolu-
tionary changes in Java applications (2004) http://sardes.inrialpes.fr/

papers/kornas04cl.pdf.

17. The Fractal Project (2005) http://fractal. objectweb.org.

18. Fleury, M., Lindfors, J.: JMX-Managing J2EE with Java Management Extensions.
Sams, The JBoss Group (2002)

19. Mulder, A.: Apache Geronimo Development and Deployment. Pearson Education
(2004)

20. The PicoContainer project (2004) http://www.picocontainer.org/.
21. Open Services Gateway Initiative, OSGi service gateway specification, Release 3

(2003) http://www.osgi.org.
22. Corwin, J., Bacon, D.F., Grove, D., Murthy, C.: Mj: a rational module system for

java and its applications. In: Conference on Object-Oriented Programming Systems
Languages and Applications (OOPSLA’2003), Anaheim, California, USA (2003)

A Model of Dynamic Binding in .NET

Alex Buckley

Imperial College London
a.buckley@imperial.ac.uk

Abstract. Millions of programmers use ECMA CLI-compliant lan-
guages like VB.NET and C#. The resulting bytecode can be executed
on several CLI implementations, such as those from Microsoft and the
open-source Mono organisation. While assemblies are the standard unit
of deployment, no standard exists for the process of finding and load-
ing assemblies at run-time. The process is typically complex, and varies
between CLI implementations. Unlike other linking stages, such as veri-
fication, it is visible to programmers and can be a source of confusion.

We offer a framework that describes how assemblies are resolved,
loaded and used in CLI implementations. We strive for implementation-
independence and note how implementations from different organisations
vary in behaviour. We describe the reflection features available for dy-
namic loading, and give C# examples that exercise the features modelled
in the framework.

1 Introduction and Motivation

Traditional language mechanisms for modular development - packages in Ada,
modules in Modula-2, namespaces and classes in C++ - have no role at run-time.
A compiler typically employs a static linker to emit a monolithic executable file,
so the compilation environment automatically becomes the entire execution en-
vironment. Few (or no) dynamic checks are needed to resolve external depen-
dencies. In contrast, the basic unit of development in Java and C# - the class
- maintains its discrete identity throughout compilation and execution. A Java
Virtual Machine or Microsoft’s .NET Common Language Runtime (CLR) can
start with the bytecode for just one class, then lazily load and link classes from
the execution environment as necessary for continued execution.

Class loading tends to be highly configurable, unlike later linking stages such
as verification. UNIX offered the dlopen C-language interface and most OO
languages offer an API for dynamic class loading in their reflection libraries.
Java has the familiar CLASSPATH mechanism for identifying class locations, and
custom classloaders can be installed into the JVM.

Matters are complicated in a CLI implementation [7] because classes are not
deployed as standalone units. Instead, classes are encapsulated inside assem-
blies. An assembly enumerates classes it provides and also the names of other
assemblies whose classes it uses. Assembly resolution consists of converting a
bytecode’s reference to an assembly name into a physical location where a suit-
able assembly exists. Because an assembly’s identity incorporates version and

A. Dearle and S. Eisenbach (Eds.): CD 2005, LNCS 3798, pp. 149–163, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

150 A. Buckley

security information, resolving an assembly is more complex than (and indeed,
a pre-requisite to) finding a class inside an assembly.1

Different CLI implementations have different rules for assembly resolution.
Also, the process of loading an assembly from a given location is implementation-
specific. We use the term binding for the combined resolution and loading process.

Microsoft’s CLI implementation, the Common Language Runtime (CLR) [15],
provides a user-configurable, network-aware system for binding called “Fusion”.
For resolution, it supports a hierarchy of policies that can modify the requested
version of an assembly. This allows security and performance patches to be used
without rebuilding an assembly’smanifest (akin to recompiling source code). It can
also resolve references to assemblies compiled for other platforms, such as the .NET
Compact Framework. For loading, it supports downloading of code from remote
machines and, as a last resort, on-demand installation where the user is asked to
provide an assembly.

Fusion’s behaviour is typically explained in verbose official technical documen-
tation. Recently, “blogs” written by Microsoft employees [3,19] [20,11,17] have ex-
plained areas of poorly documented behaviour in the current CLR release (v1.1),
and given detailed information about the next CLR release (v2.0). Programmer
understanding is significantly enhanced by this new channel, but there is no sin-
gle place where dynamic loading is explained in full detail from ‘top to bottom’.
One must piece together information from around the Internet in order to explain
a program’s exact assembly and classloading behaviour.

An alternative CLI implementation is Mono [4]. Its functionality is a subset of
the CLR’s, including for assembly binding, so documentation is shorter and easier
to understand. However, its binding process is subtly different from Fusion’s.Other
CLI implementations, such as Microsoft’s .NET Compact Framework for mobile
devices, also exhibit different behaviour from Fusion.

We wish to unify the rules that govern assembly binding in CLI implementa-
tions. We present a model that describes, at one level, how assemblies are bound
(i.e. resolved and loaded), and at another level, how loaded assemblies are used
when evaluating bytecode instructions. Assembly binding is interleaved with byte-
code evaluationas inall currentCLI implementations.2Themodel is parameterised
by resolution and loading policies, sowe specialise it for theMicrosoftCLRv1.1 and
Mono v1.1.

2 The Assembly Model

2.1 Assembly Structure

In the COM and Java environments, a file that contains code has only one identi-
fier: its filename. “DLL hell”[8] arises because multiple DLL files, each containing

1 We do not consider, in this paper, the resolution of classes in an assembly or of
members in a class.

2 The CLI specification allows resolution to take place when an application is installed,
but we do not know of any implementation that takes such an eager approach.

A Model of Dynamic Binding in .NET 151

different code, share the same filename and are placed in a shared location on disk.
An application’s dependency is resolved to a filename, but there is no guarantee
that the DLL file with that filename is what the application was tested against.
Java applications face a similar problem, even without a standard location in the
filesystem for classes.

In contrast, the CLI specification[7] gives an assembly a logical identity quite
different from its filename. We call this identity an assembly name, and reflection
APIs in CLI-compliant languages typically make it a first-class value. It contains
a display name, a version number (consisting of major, minor, revision and build
numbers), a cultural identifier (for internationalisation) and a public key. It is con-
venient to just consider the presence of a security value in an assembly name, rather
than the public key per se.

AssemblyName α : AN =
DisplayName : id, V ersion : int × int × int × int, Culture : id, Security :

id, Retargetable : bool

Binding maps an assembly name to an assembly definition. All elements in an
assembly name are potentially used during binding, e.g. if the culture is present,
it can be used to choose a directory on disk where an assembly definition might
be found. The security value plays the most important role because it determines
whether an assembly name is a strong name. A non-null security value indicates
that the assembly has been signed by a private key. A verification procedure can
use the security value to detect unauthorised changes to the assembly, but we do
not consider verification further since it happens after binding. However, whether
or not an assembly name is strong significantly affects binding, so this definition
will be useful:

StrongName(α) ≡ Key(α) �= ε

An assembly definition consists of an assembly name, assembly dependencies
and class definitions. Bytecode refers to assemblies by their display name, so the
dependencies map display names to full assembly names. We assume that bytecode
is encapsulated in class definitions of some type ClassDef . An assembly definition
knows the location of the file that it was loaded from; this is used in type-casting
and reflection operations.

AssemblyDefinition δ : AD =
Name : AN, Refs : id −→ AN, Code : id −→ ClassDef, Loc : id

The CLI specification defines an assembly as comprised of modules (that con-
tain bytecode) and other resource files. An assembly’s module and resource files
may be placed in a single physical file or left as independent files. However, mod-
ules and the physical layout of an assembly play no role in binding3, so we ignore
them in our model. This keeps the definition of the Code element simple.

3 Partition I, §9.6: “... rather than establishing relationships between individualmodules
and referenced assemblies, every reference is resolved through the current assembly.
This allows each assembly to have absolute control over how references are resolved.”

152 A. Buckley

2.2 Assembly Environment

MostCLI implementations (thoughnot theCLI specification itself) support a stan-
dard location on diskwhere assemblies can be placed, typically if they have a strong
name. At load-time, this location is typically checked before others, and thus pro-
vides the default environment from which assemblies come. In the CLR and Mono,
the environment is provided by the Global Assembly Cache (GAC).

Environment Δ : Env = AN −→ AD

We introduce the extended environment to represent both the filesystem of the
machine executing the code, and a URL-addressable space of machines that have
assemblies available for download. Given a list of paths, the extended environment
tries each in turn until an assembly definition is found; it returns ε if the list is ex-
hausted without finding an assembly.

Extended Environment EE : ExtEnv = id∗ −→ AD

3 Assembly-Oriented Execution

3.1 State

We wish to show how assembly identity, resolution and loading affect execution.
We distinguish the state of the executing program from the state of the runtime
system itself. Program state P is a pair whose elements are an instruction stack
and an operand stack.

Program state P : I∗ × V ∗

A CLI instruction I is parameterised by a display name and a member descrip-
tor, M. The display name must have a corresponding entry in the Refs element of
the enclosing assembly. A member descriptor is simply a class and a field/method
signature. Values come from a type V with which we are not concerned.

The runtime system’s state is represented by three elements: an environment
(defined in section 2), a heap and a stack.

The runtime system’s heap stores assembly definitions loaded from the environ-
ment and extended environment. The CLR’s heap is divided into two parts, called
contexts.4 Contexts stop a programmer circumventing the system’s binding poli-
cies. The Mono system does not support contexts at present.

An assembly loaded by the CLR itself is placed in the first context. This hap-
pens when a bytecode instruction is jitted and the instruction’s display name is
resolved. Assemblies loaded directly from a filename are placed in the second con-
text.This happenswhen a programmer uses the reflectionAPIprovidedby the core
assemblies in theCLRandMono.With a heap consisting of a pair ofmappings from
assembly name to definition, we write Hx for H ↓1.

Heap H : (AN −→ AD) × (AN −→ AD)

4 In fact, there is a third heap context, but its role is not important in our current model.

A Model of Dynamic Binding in .NET 153

InaCLI implementation, theheapof loadedassemblies is part of anappdomain,
which is a logical unit of isolation in a process. As we do not model the ability of a
program to dynamically create and destroy appdomains, there is exactly one ap-
pdomain per executing application. Therefore, we do not need to qualify our heap
of assemblies with an appdomain.

We need to track the call stack of assemblies at each dynamic program point.
This is because the references of the currently executing assembly is consultedwhen
resolving a reference to another assembly.5 In addition, the context of the currently
executing assembly is important when resolving an assembly reference. The stack
starts with the assembly that the operating system considers is the entrypoint for
an application.

Stack S : (AN × {1, 2})∗

3.2 Evaluation

Evaluation is performed by a small-step operational semantics that evolves the
state of the runtime system (δ, H, S) and the program state (P).

Δ, H, S, P −→ Δ′, H ′, S′, P ′

The rules are shown infig. 1.Thebytecode instruction on the program’s instruc-
tion stack canbe evaluated if it depends on an assembly already loaded into the sys-
tem heap. (Rules Exec-Instr, Exec-Instr-Call, Exec-Instr-Cast) Details
of the evaluation are not important, so we abstract it into this judgement which
evolves the program state given an assembly definition needed by the instruction:

δ, P −→ P ′

We are forced to differentiate the call instruction from other instructions be-
cause we need to add the called assembly’s name to the system stack, and modify
the program’s instruction stream with the body of the called method. We assume
a lookup function that can find a member M in an assembly.

A binding step can take place to resolve and load an assembly that an instruc-
tion is dependent on. (Rule Exec-Bind) It uses the binding rules that evolve an
environment and heap with an assembly definition for assembly name α, returning
the name of the actual assembly loaded:

Δ, H, α −→ Δ′, H ′, α′

The execution is stuck if binding fails to find an assembly definition, i.e. α′ is ε.

Heap Contexts in Evaluation. To evaluate a bytecode instruction, a definition
must be available for the assembly it refers to. As per the CLI specification, we take
the display name N mentioned in an instruction and look it up in the references of
the currently executing assembly T , obtaining a full assembly name α. In the CLR,
5 CLI Specification Partition 1 §9.6.

154 A. Buckley

P [−] = (− :: is , v :: vs)

I [−] = ldfld [−]M | stfld [−]M | new [−]M

(Exec-Instr)

Refs(Hx(T))(N) = α y = context(α, H,x) Code(Hy(α)), P [I [N]] −→ P ′

Δ, H, (T, x) :: Ts, P [I [N]] −→ Δ, H, (T, x) :: Ts, P ′

(Exec-Instr-Call)

Refs(Hx(T))(N) = α y = context(α, H,x) lookup(Hy(α), M) = e

Δ, H, (T, x) :: Ts,P [call [N]M] −→ Δ, H, (α, y) :: (T, x) :: Ts,P [e]

(Exec-Instr-Cast)

Refs(Hx(T))(N) = α y = context(α, H,x)
type(v) = (α′, C′) z = context(α′, H, x)
Loc(Hy(α)) = Loc(Hz(α

′))
Code(Hy(α)), P [cast C′ to C] −→ P ′

Δ, H, (T, x) :: Ts,P [castclass [N]C] −→ Δ, H, (T, x) :: Ts,P ′

E[−] = I [−] | castclass [−]M | call [−]M

(Exec-Bind)

Refs(Hx(T))(N) = α Δ, H1, α −→ Δ′, H ′
1, α

′

Δ, H, (T, x) :: Ts,P [E[N]] −→ Δ′, (H ∪1 H ′
1), (T, x) :: Ts,P [E[N]]

(Exec-Run)

Δ, H,S, P [E[N]] −→ Δ′, H ′, S, P [E[N]] Δ′, H ′, S, P [E[N]] −→ Δ′, H ′′, S, P ′

Δ, H,S, P [E[N]] −→ Δ′, H ′′, S, P ′

H ∪1 H ′ ≡ (H1[y �→ H ′(y)|y ∈ dom(H ′)], H2)

Fig. 1. Execution and Loading

which heap context to look up this assembly name α in depends on which context
the currently executing assembly is loaded in. An assembly loaded in the first con-
text can only “see” assemblies also loaded in the first context; an assembly loaded
in the second context can see assemblies in both contexts, preferring the second.
This policy is justified by the first context being where assemblies are “officially”
loaded and the second context being where expert programmers place their own
assemblies. (Mono only has one context, so the issue does not arise.)

contextCLR(α, H, x) =
{

x if α ∈ dom(Hx)
1 if x = 2 ∧ α /∈ dom(H2),∈ dom(H1)

contextMono(α, H, x) = x

A Model of Dynamic Binding in .NET 155

Casting. Casting is complicated because assemblies play the same role as class-
loaders in Java, i.e. scoping a class such that a type is an (assembly name,class
name) pair. Ensuring that the same classes from different assemblies are not con-
fused is an important defence against attacks. Therefore, in the CLR, the source
and target classes must be defined in the same assembly file on disk.

In addition, the heap context in which an assembly is loaded provides another
level of qualification for a class, i.e. a type in the CLR is a (context id,assembly
name,class name) triple. The same assembly definition can be loaded into multiple
contexts, but casting an object across contextswould give rise to the sameproblems
as casting it across classloaders. Therefore, the assembly definitions containing the
source and target classes must be in the same context.

The Exec-Instr-Cast rule first obtains the full assembly name α referred to
by the castclass instruction. We assume that the object to be cast is accessible via
the top value v on the program state’s value stack, and that the auxiliary function
type returns an (assembly name,class name) pair representing the object’s type.
The assemblies named by α and α′ must be loaded, potentially in different con-
texts. We check that the two loaded assemblies were loaded from identical paths,
as required by the CLR. If so, then the success of the cast is for the program to de-
termine; we assume a notional cast operator that checks subclassing using the class
definitions provided from an assembly definition:

Code(Hy(α)), P [cast C′ to C] −→ P ′

4 Assembly Binding

The binding rules in fig. 2 take a logical assembly name and return an assembly
definition plus a name. If the assembly is not already loaded in the heap, then they
use a name resolver η, a location resolver
, a assembly installer ⊕, and a name
matcher ∼.

Aname resolver performs a logical-to-logicalmapping, applying versioning pol-
icy to anassemblyname inorder to obtainamore refinedassemblyname.A location
resolver performs a logical-to-physical mapping, taking an assembly name and ap-
plying a “probing” policy that describes where to search for an assembly definition.
If the location resolver fails to provide a location where a suitable assembly can be
found, then an on-demand (i.e. “just-in-time”) assembly installation operation is
tried, via ⊕.

If the extended environment is able to find an assembly, or an assembly is
installed on-demand, then the binding rules return the heap augmented with the
assembly definition, plus the name of the assembly that was actually loaded. CLI
implementations require that the loaded name matches the name of the desired
assembly (i.e. produced by the name resolver), according to ∼.

Name Resolver η : AN −→ AN
Location Resolver
 : AN × E −→ id∗

Installer ⊕ : AN × E −→ E
Name Matcher ∼: AN × AN −→ bool

156 A. Buckley

(Bind-Already-Loaded)

α ∈ dom(H)

Δ, H, α −→ Δ, H, α

(Bind-Available)

α /∈ dom(H)
η(α) = α′ EE(Δ 	 α′) = δ α′ ∼ Name(δ)

Δ, H, α −→ Δ, H[α �→ δ], Name(δ)

(Bind-Install-On-Demand)

α /∈ dom(H)
η(α) = α′ EE(Δ 	 α′) = ε Δ ⊕ α′ = Δ′ α′ ∼ Name(Δ′(α))

Δ, H, α −→ Δ′, H[α �→ Δ′(α)], Name(Δ′(α′))

(Bind-Unavailable)

α /∈ dom(H) η(α) = α′ EE(Δ 	 α′) = ε Δ ⊕ α′ = Δ

Δ, H, α −→ Δ, H, ε

Fig. 2. Binding

We introduce an application context that stores facts about the runtime
environment for use by the name and location resolvers.

Application Context Γ : (RuntimeV ersion : int × int × int × int,
Mapping : AN −→ (AN × id), AppPath : id)

We define a Binding Framework BF = (Γ, Δ, η,
,⊕,∼). A binding framework
is instantiated for a specific combination of CLI implementation and user applica-
tion. The CLI implementation supplies the environment Δ, which is a single direc-
tory for the CLR and one or more directories for Mono. The CLI implementation
also suppliesΓRuntimeV ersion, η,
,⊕ and∼. The user application supplies its loca-
tion on disk ΓAppPath, which is independent of any CLI implementation. ΓMapping

is discussed in the next section.
Instantiating the binding framework several times allowsmodelling of “side-by-

side execution”, where several CLI implementations can be installed on the same
machine, each with its own core assemblies. The operating system chooses which
implementation is suitable for executing a givenapplication,whichprovides further
information necessary for its execution.

4.1 Name Resolution

A name resolver η maps a logical assembly name to another logical assembly name,
according to three policies: servicing, unification and retargeting. Fig. 3 shows
name resolvers for the CLR and Mono.

Servicing policy. To allow assemblies to be serviced (i.e. upgraded for security and
performance reasons without modifying calling applications), the CLR supports
policies for redirecting references to strongly-named assemblies. (A reference to a
non-strongly-named assembly cannot be serviced.)

A Model of Dynamic Binding in .NET 157

ηCLR(α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α
if ¬StrongName(α)

ΓMapping(α) ↓1

if StrongName(α) ∧ ¬CoreCLR(α)

α[V ersion �→ ΓRuntimeV ersion]
if StrongName(α) ∧ CoreCLR(α) ∧ ¬Retargetable(α)

α[V ersion �→ ΓRuntimeV ersion, Security �→ ‘b77a5c561934e089′]
if StrongName(α) ∧ CoreCLR(α) ∧ Retargetable(α)

ηMono(α) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α
if ¬CoreMono(α)

α[V ersion �→ ΓRuntimeV ersion]
if CoreMono(α)

CoreCLR(α) ≡
DisplayName(α) ∈ {mscorlib, System.Windows.Forms, ...}

CoreMono(α) ≡ StrongName(α) ∧ DisplayName(α) ∈ {mscorlib}

Fig. 3. Name Resolution

First, each application can supply a policy file for redirecting one version of a
given assembly to another. Second, “publisher policies” can redirect requests for
assemblies in the GAC. Third, a machine-wide redirection policy is applied after
the application and publisher policies. We represent the union of these policies as
a mapping from assembly name to assembly name in ΓMapping (using the first ele-
ment of the range). In contrast, Mono does not currently support redirection poli-
cies, so its ΓMapping is empty.

Unification policy. A CLI-compliant virtual machine, such as the CLR, is often de-
veloped by different individuals from those who program the core assemblies that
accompany the VM.6 It is often practical to test a VM only with the exact frame-
work assemblies that will accompany it.

The CLR and Mono both impose a restriction that some core assemblies (the
exact set differs) must be the same version as that of the runtime execution system
itself.

Retargeting policy. As well as the CLR, Microsoft produces a CLI implementation
for mobile devices called the .NET Compact Framework. An application compiled
for the CLR will not run on a mobile device equipped with just the .NET Compact
Framework, even if the developer is careful to use only assemblies available in the

6 In Java, the java.lang.* class hierarchy.

158 A. Buckley

CompactFramework.This is because the core assemblies that accompany the CLR
have different strong names from the assemblies in the Compact Framework [16].

However, an application compiled for the .NET Compact Framework will run
on the CLR. This is possible because the generated assembly references the Com-
pact Framework’s assemblies by their strong names, as usual, but each reference
features a retargetable flag. The .NET Compact Framework’s runtime ignores this
flag and resolves the core assemblies as usual. The CLR reacts to it by rewriting
the retargetable assembly names to the relevant core assembly names; the version
number is unified and the key token is set to a standard value that indicates a core
assembly to Fusion. This is Microsoft-specific behaviour; the Mono runtime will
halt on failing to resolve the strong names of the Compact Framework assemblies
referenced by the application.

4.2 Location Resolution

A location resolver
 supplies a list of physical filenames for the extended environ-
ment to try to obtain an assembly from. Fig. 4 shows location resolvers for the CLR
and Mono.

Given an assembly name, the CLR’s location resolver prefers to search the en-
vironment first if the assembly’s name is a strongname. The next possible location
is a “codebase” from the application context, specifically the second element of the
ΓMapping entry for the target assembly name. The codebase’s location is final in the
sense that no alternative paths are tried if it is specified. If a codebase is not spec-
ified, then various locations in the filesystem are suggested, using the path of the

Δ 	CLR α =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ, L
if StrongName(α) ∧ ΓMapping(α) ↓2= L

Δ, Locs(α)
if StrongName(α) ∧ ΓMapping(α) ↓2= ε

L
if ¬StrongName(α) ∧ ΓMapping(α) ↓2= L

∧ L = ΓAppPath +′′ /′′ + x for some x

Locs(α)
if ¬StrongName(α) ∧ ΓMapping(α) ↓2= ε

Locs(α) = (ΓAppPath + “/′′ + DisplayName(α) + “.dll′′),
(ΓAppPath + “/′′ + DisplayName(α) + “/′′ + DisplayName(α) + “.dll′′),
(ΓAppPath + “/′′ + Culture(α) + “/′′ + DisplayName(α) + “.dll′′),
(ΓAppPath + “/′′ + Culture(α) + “/′′ + DisplayName(α) + “/′′+
DisplayName(α) + “.dll′′)

Δ 	Mono α = (ΓAppPath +′′ /′′ + DisplayName(α) +′′ .dll′′), Δ

Fig. 4. Location Resolution

A Model of Dynamic Binding in .NET 159

Δ ⊕CLR α = Δ′ for some Δ′ ⊇ Δ where Δ′(α) �= ε =⇒ Δ(α) = ε

Δ ⊕Mono α = Δ

Fig. 5. Software Installation

currently executing application (which is not necessarily that of the currently exe-
cuting assembly). The extended environment will “probe” each of these locations
in turn.

When performing location resolution for an assembly name that is not a strong-
name, the environment is not used. If a codebase is available, it must come from the
same location as the executing application. Otherwise, the filesystem is tried as
before.

The location resolver for Mono is quite different. It tries the application’s local
directoryfirstbefore the environment. (It also searches aCLASSPATH-style directory
list before the environment, but we do not show this.)

4.3 Name Matching

The CLR and Mono require an exact match between desired and loaded assembly
versions:

α ∼CLR,Mono α′ ≡
StrongName(α) ⇐⇒ StrongName(α′) ∧
V ersion(α) = a.b.c.d ⇐⇒ V ersion(α′) = a.b.c.d

4.4 Install-on-Demand

If both the environment and the extended environment fail to supply an assem-
bly, the ⊕ function tries to perform an “install-on-demand” operation. Unlike the
extended environment, which is queried at a specific location (e.g. a URL), the in-
staller is required to return an assembly given just its name.

In the CLR, we suppose that the end user is asked to supply an assembly,
e.g. on a CD. Because the supplied assembly is totally free, we pass the old en-
vironment to ⊕ to see that if it does grow, then a truly new assembly is available in
the new environment. This approach allows us to accept that the installation can
fail, leaving the environment unchanged and propagating (through binding rule
Bind-Unavailable) a loading failure.

Mono does not support on-demand installation, so returns an unchanged envi-
ronment.

4.5 Dynamic Loading Through Reflection

As stated in section2, assemblies canbe loadedusing a reflectionAPI.This iswidely
used by developers building applications that support plug-ins. Among the many

160 A. Buckley

reflection methods provided by the CLR’s core assemblies, we consider Load and
LoadFrom. Mono’s core assemblies provide Load only. The full method signatures
are shown in fig. 6.

The Loadmethod takes a strong name α from the program state’s value stack,
and defers to the standard binding rules in fig. 2 to resolve and load it. It is as if a
strongname α has been found in an assembly’s metadata, i.e. Load’s behaviour is
that of Exec-Bind in fig. 1.

LOAD ≡ call[mscorlib]System.Reflection.Assembly :: Load
LOADFROM ≡ call[mscorlib]System.Reflection.Assembly :: LoadFrom

P [−,−] = (− :: is ,− :: vs)

(Exec-Instr-CallLoad)

Δ, H1, α −→ Δ′, H ′
1, α

′

Δ, H, (T, x) :: Ts, P [LOAD, α] =⇒ Δ′, (H ∪1 H ′
1), (T, x) :: Ts, P [ε, α′]

(Exec-Instr-CallLoad2)

IsDisplayName(N) EE(Δ 	 N) = δ Δ, H1, Name(δ) −→ Δ′, H ′
1, α

Δ, H, (T, x) :: Ts, P [LOAD, N] =⇒ Δ′, (H ∪1 H ′
1), (T, x) :: Ts, P [ε, α]

(Exec-Instr-CallLoad3)

IsDisplayName(N) EE(Δ 	 N) = δ Δ, H1, Name(δ) −→ Δ, H1, ε

Δ, H, (T, x) :: Ts, P [LOAD, N] =⇒ Δ, (H ∪1 [Name(δ) �→ δ]), (T, x) :: Ts, P [ε, Name(δ)]

(Exec-Instr-CallLoadFrom)

EE(L) = δ Δ, H1, DisplayName(Name(δ)) =⇒ Δ′, H ′
1, α

α �= ε ∧ Loc(δ) = Loc(H ′
1(α))

Δ, H, S, P [LOADFROM, L] =⇒ Δ′, (H ∪1 H ′
1), S, P [ε, α]

(Exec-Instr-CallLoadFrom2)

EE(L) = δ Δ, H1, DisplayName(Name(δ)) =⇒ Δ′, H ′
1, α

α = ε ∨ Loc(δ) �= Loc(H ′
1(α))

Δ, H, S, P [LOADFROM, L] =⇒ Δ, (H ∪2 [Name(δ) �→ δ]), S, P [ε, Name(δ)]

H ∪1 H ′ as before

H ∪2 [α �→ δ] ≡
{

H if α ∈ dom(H2)
(H1, H2[α �→ δ]) otherwise

Fig. 6. Dynamic loading through reflection

Load can also take a display nameN , e.g. “Calc”. In this case, it probes the local
directory first. If Calc.dll is found and does not have a strongname, then that file
is bound to immediately. But if the file has a strongname, then that strongname is
used to initiate the standard binding process. If this process succeeds, the assembly
it finds is Load’s result, rather than the local Calc.dll. If the process fails, then
Load return the local Calc.dll assembly. The interesting case is when Calc.dll

A Model of Dynamic Binding in .NET 161

is not present locally, because then there is no strongname available to attempt to
bind with - even if a suitable Calc assembly is in the GAC. The formal system is
stuck in this case, reflecting that no assembly would be returned by Load.

The LoadFrommethod is complex too. It takes a location L from the program
state’s value stack, and loads the file at that location, e.g. c:\app\Calc.dll. It
then initiates the standand binding process with the display name embedded in
that file, i.e. Calc. If this process returns an identical assembly definition from
the heap’s first context - i.e. an assembly in that context was already loaded from
c:\app\Calc.dll - then that assembly in the first context is LoadFrom’s result.
The file just loaded from c:\app\Calc.dll is ignored and the second heap context
is unchanged. However, if the standard process fails to find an exactmatch for Calc
in the first context - perhaps one exists, but loaded from d:\libs\Calc.dll - then
the assembly from c:\app\Calc.dll is bound in the second context.

5 Related and Further Work

Classloading in Java has received significant attention[5,13,14,18], and [10]
presents it in an abstract setting. However, relatively little work focuses on the
CLI platform. [6] unifies dynamic linking in Java and the CLI, but abstracts the
assembly binding process to a very high level. [8] and [9] offer a formal model of a
well-formed GAC, where assembly addition and removal do not break existing de-
pendencies. Our work is clearly complementary to this, as we show how the GAC is
used in the wider assembly binding process.Our⊕ operatorwould ideallymaintain
a stronger safety property concerning evolution of the GAC[9].

We have described and formalised how assemblies are resolved and loaded
by common CLI implementations. Most programmers assume that an assembly’s
strong name is its sole identity once loaded, but we show how the CLR, during ex-
ecution, considers an assembly’s identity to have more elements. Namely, it con-
siders where an assembly was loaded from (i.e. a disk or URL-based location) and
where it was loaded to (i.e. its heap context). These elements are necessary because
the CLR exposes reflective assembly loading operations that can load arbitrary as-
semblies. While merely loading such assemblies is harmless, it is essential to avoid
using their classes if the assembly’s identity masquerades as one of the core assem-
blies. We plan to state formally that binding is “safe” in the current CLR in that
it never leads to a heap where a non-core assembly is mistaken for a core assembly.
The Mono system avoids the problem at present by not offering reflective loading
capabilities.

A weakness of the currentmodel is that name resolutionproduces a very precise
answer, i.e.a single assembly name.This does not accuratelymodel the .NETCom-
pact Framework or, indeed, more flexible future schemes for choosing an assembly
to load[1,2]. The .NET Compact Framework does not support servicing policies
that redirect an assembly’s desired version, so applications cannot be directed to
use later, better code. However, the Compact Framework’s binding rules permit
the loader to provide version a.b.c.x of an assembly when a reference is made to
version a.b.c.d, i.e. the last element of the version number can “float”. The bind-

162 A. Buckley

ing rules also permit any version of an assembly to be loaded when the reference
mentions version 0.0.0.0.

In our model, this equates to the name resolver producing a.b.c.∗ for the desired
version to locate. We could modify name resolution to produce a constraint on
permitted names, rather than a specific name. Location resolution would then
need to iterate through the files found in the extended environment to choose the
“best” one matching the constraint. The name matcher would have the following
definition:

α ∼CompactFramework α′ ≡
StrongName(α) ⇐⇒ StrongName(α′) ∧
((V ersion(α) = a.b.c. ⇐⇒ V ersion(α′) = a.b.c.) ∨ V ersion(α) = 0.0.0.0)

The CLR v2.0 will be released in late 2005 and makes some small changes to
unification policy[19], so we will need a new name resolver. More interesting are
Microsoft’s plans for binding in Longhorn[12], where assemblies are typed and ser-
vicing policy is affected by the types of referencing and referenced assemblies. A
feature called “interim roll-back” is also planned, where assemblies installed in the
environment are temporarily hidden due to flaws being found in them. Our model
can handle the new servicing policy (at name resolution) and rollback policy (at
location resolution). More challenging is to state whether syntactic or semantic
compatibility is assured by these new features.

References

1. Alex Buckley and Sophia Drossopoulou. Flexible Dynamic Linking. In ECOOP
Workshop on Formal Techniques for Java Programs (FTfJP 2004), Oslo, Norway,
June 2004.

2. Alex Buckley, Michelle Murray, Susan Eisenbach, and Sophia Drossopoulou. Flexi-
ble Bytecode for Linking in .NET. In First Workshop on Bytecode Semantics, Ver-
ification, Analysis and Transformation (BYTECODE 2005), ENTCS, Edinburgh,
Scotland, March 2005. Elsevier BV.

3. Suzanne Cook. .NET CLR Loader Notes. http://blogs.msdn.com/suzcook , 2005.
4. Miguel de Icaza. Mono. http://www.mono-project.com/, 2005.
5. Drew Dean. The Security of Static Typing with Dynamic Linking. In Proceedings

of the Fourth ACM Conference on Computer and Communications Security, Zurich,
Switzerland, April 1997.

6. Sophia Drossopoulou, Giovanni Lagorio, and Susan Eisenbach. Flexible Models
for Dynamic Linking. In Pierpaolo Degano, editor, Proceedings of the 12th Euro-
pean Symposium on Programming (ESOP 2003), volume 2618 of LNCS, pages 38–53.
Springer-Verlag, April 2003.

7. ECMA. Standard ECMA-335: Common Language Infrastructure. ECMA
International, December 2002. http://www.ecma-international.

org/publications/standards/Ecma-335.htm.

8. S.Eisenbach,V. Jurisic, andC. Sadler. Feeling theway throughDLLHell. In Proceed-
ings of the FirstWorkshop onUnanticipated Software Evolution (USE 2002), Malaga,
Spain, June 2002.

A Model of Dynamic Binding in .NET 163

9. S. Eisenbach, V. Jurisic, and C. Sadler. Managing the Evolution of .NET Programs.
In 6th IFIP International Conference on Formal Methods for Open Object-based Dis-
tributed Systems (FMOODS 2003), volume 2884 of LNCS, pages 185–198, Paris,
France, November 2003. Springer-Verlag.

10. Sonia Fagorzi, Elena Zucca, and Davide Ancona. Modeling Multiple Class Loaders
by aCalculus for Dynamic Linking. In Proceedings of the ACMSymposium onApplied
Computing (SAC-2004), Nicosia, Cyprus, March 2004.

11. Shawn Farkas. .NET Security Blog. http://blogs.msdn.com/shawnfa, 2005.
12. Cathi Gero and Jeffrey Richter. The Future of Assembly Versioning. http://www.

theserverside.net/articles/showarticle.tss?id=AssemblyVersioning, 2004.
13. T. Jensen, D. Le Metayer, and T. Thorn. Security and Dynamic Class Loading in

Java: A Formalisation. In Proceedings of the IEEE International Conference on Com-
puter Languages, pages 4–15, Chicago, IL, USA, 1998.

14. Sheng Liang and Gilad Bracha. Dynamic Class Loading in the Java Virtual Machine.
In Proceedings of the 13th ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages & Applications (OOPSLA’98), Vancouver, BC, Canada,
October 1998.

15. Eric Meijer and John Gough. Technical Overview of the Common Language Runtime.
Microsoft, 2000.

16. Daniel Moth. http://www.danielmoth.com/Blog , 2004.
17. Steven Pratschner. .NET CF WebLog. http://blogs.msdn.com/stevenpr, 2005.
18. ZhenyuQian,Allen Goldberg, and AlessandroCoglio. AFormal Specification of Java

Class Loading. In Proceedings of the 15th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages & Applications (OOPSLA 2000), pages
325–336, Minneapolis, MN, USA, 2000.

19. Alan Shi. The Fusion Weblog. http://blogs.msdn.com/alanshi , 2005.
20. Junfeng Zhang. .NET Framework Notes. http://blogs.msdn.com/junfeng, 2005.

A Examples

C# examples that demonstrate heap contexts and assembly identity can be
found at http://slurp.doc.ic.ac.uk/pubs/dynamicbindingindotnet-
examples.pdf

Reuse Frequency as Metric for Dependency

Resolver Selection

Karl Pauls1 and Till G. Bay2

1 Freie Universität Berlin,
Fachbereich Mathematik und Informatik,

Takustr. 9, D-14195 Berlin, Germany
pauls@inf.fu-berlin.de

2 Eidgenössische Technische Hochschule Zürich,
Chair of Software Engineering,

ETH Zentrum, CH-8092 Zürich, Switzerland
bay@inf.ethz.ch

Abstract. The demand for component and service discovery engines to
use in extensible applications is surging. No one so far has devoted much
effort to metrics that aid selecting among different resolvers of the same
dependency. This paper defines the Reuse Frequency: a metric that re-
lates components or services to each other and measures their relative
importance. Additionally, the ComponentGraph is presented that builds
the averaged dependency graph of entities augmented with their popu-
larity and the likelihood of each possible dependency resolver. The Reuse
Frequency targets all scenarios where entities have dependencies on each
other and a metric for the measurement of their relative importance is
needed; the target implementation environment of the ComponentGraph
is the Open Service Gateway Initiative framework, but the concepts are
applicable to component or service repositories in general.

1 Introduction

Modern applications and software solutions increasingly center around loosely
coupled and extensible architectures. Component or Service orientation is ap-
plied in almost all areas of application development including distributed sys-
tems, ubiquitous computing, embedded systems, and client-side applications.
The concept of a component is broad, ranging from simple class files to plugins
and other units of modularization. In general, component models and systems
employing component-oriented approaches all define a concept similar to a com-
ponent, e.g., an independently deployable executable unit of composition that is
subject to composition by third parties [1].

The ability to compose a component is related to the component model’s
ability to express dependencies on other components. Dependencies describe
prerequisites of a component. Component dependencies may exist at the de-
ployment unit level, such as a dependency on a resource like a library, or they
may exist at the instance level, such as a dependency on a service provided by

A. Dearle and S. Eisenbach (Eds.): CD 2005, LNCS 3798, pp. 164–176, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Reuse Frequency as Metric for Dependency Resolver Selection 165

another component. As a consequence, deploying a component requires deploy-
ing the transitive closure of all its dependencies. In practice, if a component has
dependencies, then it cannot be used until the transitive closure of all its depen-
dencies is satisfied. This raises the issue of how to locate the resources required
to resolve the dependencies [2].

The demand for component discovery engines to use in extensible applica-
tions is surging. Several partial solutions already exist, focusing on the discovery
of components and the satisfaction of the transitive closure of their dependencies,
but no one so far has devoted much effort to metrics that can aid in the selec-
tion among different resolvers of the same dependency. More specific, extensible
applications face the situation where they can easily discover new extensions or
services to make use of and resolve dependencies of chosen components but are
unable to provide suggestions in a scenario where several components provide
the same required resources, let alone making sound decisions automatically. To
date, two approaches predominate: Namely, presenting the user with a list of
possibilities together with a working (i.e., not necessarily optimal) suggestion of
transitive closure resolving components or the definition of fixed sets of compo-
nents by a specific provider. Both solutions however, present a problem when it
comes to selection between multiple resolvers or resource providers respectively.
Subsequently, a metric for weighing individual solutions, which could be called
their popularity, becomes interesting. If one considers component dependencies
as references to resolving resources (i.e., links), then this issue has much in com-
mon with measuring of the relative importance of web pages. Consequently, it
is interesting to investigate whether the ideas from the web page popularity
measurement domain are useful and/or applicable for component and service
measurement.

To this end, this paper defines the Reuse Frequency of a component. The
Reuse Frequency is a metric that relates components to each other and measures
their relative importance. It is based on the topology of all possible dependency
resolving graphs of a given repository. The main idea is that if a component A
has a dependency to a component B, then A regards B as important enough
to deserve being considered by and maybe deployed to an extensible system. In
other words, the Reuse Frequency can be used as an order relation between possi-
ble extensions when presented to the end-user. It facilitates reasoning about the
structure of entities in a component repository. Additionally, a tool is presented
that builds the averaged dependency graph of entities in a repository, augmented
with their popularity and the likelihood of each possible dependency resolver for
each dependency of an entity, called the ComponentGraph. The Component-
Graph allows reasoning about the structure of a given repository and shows the
average relative importance of its entities.

Applying the Reuse Frequency to components enables to weight different
dependency resolving transitive closures among each other, while their visual-
ization via the ComponentGraph enables reasoning about overall coherence. The
Reuse Frequency targets all scenarios where entities depend on each other and
a metric for measuring their relative importance is needed. The target imple-

166 K. Pauls and T.G. Bay

mentation environment of the ComponentGraph is the Open Service Gateway
Initiative framework, but the concepts are applicable to component repositories
in general. This paper derives and defines the Reuse Frequency in the next sec-
tion, then the ComponentGraph is presented in detail; this is followed by usage
scenarios and related work. The paper finishes with future work and conclusions.

2 Reuse Frequency

The usage of the term “component” in this paper is intended to be vague. In
general, the meaning of component for this paper is an independently deployable
executable unit of composition. An important advantage of Component Based
Software Engineering is reuse. By reusing existing solutions to problems one
can reduce time to market. Components capture solutions in a way that reuse
is easier. Subsequently, it makes sense to measure the relative importance of a
component by means of how often it is reused.

To this end, components may provide both service interfaces and resources to
other components. Two levels of dependencies exist: deployment and instance.
Deployment-level dependencies are on provided resources, such as libraries (e.g.,
Java packages), whereas instance-level dependencies are on component service
interfaces. In the simplest case, the static structure of a set of resolved compo-
nents is similar to web pages that link to each other. A dependency from one
component on another is like a link from one web page to another. Consequently,
it is interesting to investigate how techniques from web search engines can be
applied in order to determine the popularity of a component. Fortunately, the
ranking mechanism from one of the most popular web search engines is known:
Google’s PageRank.

2.1 PageRank Explained

Google’s PageRank is a method to measure the relative importance of web pages.
The main principles of PageRank are explained in a paper written by the two
founders of Google [3]. The algorithm has most likely changed since that time
but the basis remains the same. It is based on the topology of web pages i.e.,
a graph-like structure where entities are connected with arbitrary other entities
by means of links. The general idea is to take only this structure into account
when measuring the popularity of a page.

If page A has a link to page B, then page A“thinks” that page B is important
enough to deserve being cited and maybe visited by visitors of page A [4]. In
other words, a link from A to B increases the PageRank of B. Furthermore,
the individual importance of a specific site is propagated to all sites it links
to – hence, the higher the PageRank of page A, the higher the increase of the
PageRank of page B. Furthermore, the propagated popularity of a page is split
among all outgoing links i.e., the fewer pages A has links to other sites besides
page B, the more the PageRank of B increases. These two properties of the
PageRank algorithm add up to an interesting overall attribute of it – namely,

Reuse Frequency as Metric for Dependency Resolver Selection 167

the more important the sites that link to a specific site and the more exclusive
the links are the higher is the importance of the site. The algorithm is iterative
and is defined as follows:

Definition 1. PageRank
Let A1, A2, ..., An: be n pages linking to page B. Let PR(Ak) be the PageRank
of page Ak, N(Ak) the number of outward links within page Ak, and d a damping
factor between 0 and 1, generally equal to 0.85. Then the PageRank of page B is
computed from the PageRank of all pages Ak in the following way:

PR(B) = (1-d) + d x (PR(A1) / N(A1) + ... + PR(An) / N(An))

In other words: a page’s PageRank = 0.15 + 0.85 * (a “share”of the PageRank of
every page that links to it) where “share” = the linking page’s PageRank divided
by the number of outbound links on the page.

The algorithm appears simple at first sight, but the iterative approach adds
complexity. In order to calculate the PageRank of a specific site, the PageRank of
all pages linking to it must have been computed. This is addressed by assuming
an initial value of one. The damping factor is needed to prevent that the iteration
goes on forever. If it is too low the values will just drain away and converge to
zero. If it is too high the iteration may never settle hence, the proposed value
0.85 (out of the original paper) seems to be the most authoritative. Between 40
and 50 iterations are normally sufficient to let the individual values settle. In
practice, the convergence is obtained after several tens of iterations; depending
on the total number of pages.

Example 1 Example 2 Example 3

Fig. 1. PageRank Examples

As a small set of examples (for more see [5]) consider the structure of pages
in Figure 1. In Example 1, site A has a link on page B while page C is not
connected. Once we apply the algorithm with an initial value for each page we
end up with: PR(A) = 0.15, PR(B) = 1, and PR(C) = 0.15 After a few iterations
the ranks have changed: PR(A) = 0.15, PR(B) = 0.2775, and PR(C) = 0.15.
This is where the values settle and we are done. The second example shows a
scenario where all sites are linking to each other. It is quite obvious that in a
situation like this the PageRank of the sites ends up being one, no matter how

168 K. Pauls and T.G. Bay

many iterations. Finally, example 3 shows page A linking to both B and C. B
and C are also linked to A. After the first iteration the results are: PR(A) = 1.85,
PR(B) = 0.575, and PR(C) = 0.575. The results settle at: PR(A) = 1.459459,
PR(B) = 0.7702703, and PR(C) = 0.7702703. In both cases page A ends up
with a much larger proportion of the PageRank than the other two pages. This
is because pages B and C are passing PageRank to A exclusively.

In summary, Google’s PageRank lends itself well to calculate the relative
importance of a page inside a fixed static set of pages. After the calculation
shown in the examples the acquired values have to be normlized and scaled. The
specific details of the normalizing and scaling (i.e., to/by which values) is up to
the provider and not further explained by the authors [3]. In general, this must
be decided based on the specific scenario. The next section derives the Reuse
Frequency of a component and explains why the simple PageRank is not enough
to capture dependencies among components.

2.2 Deriving the Reuse Frequency

As stated above, Google’s PageRank lends itself well as a metric to measure
relative importance of an entity in a static graph. Unfortunately, this is not
the case in a component scenario. While it is possible to resolve the transitive
closure of dependencies before execution, instance-level dependencies allow the
possibility of dynamically extensible systems. To support extensible systems,
a resource discovery service should not only provide support prior to runtime,
but during runtime so that extensible systems can integrate new components
dynamically. More importantly, a link is a fixed connection between two pages.
A dependency of a component is the explicit need of a resource that is needed
by the component in order for it to function. Consequently, a dependency can be
satisfied by more than one component in case that several components provide
the same resource.

Example 1 Example 2 Example 3

Fig. 2. Multiple Resolver Dependency Graph Examples

Selecting a possible resolution of component dependencies actually shows
a possible graph instance but not necessarily the one used at any given time.
Since we assume an arbitrary framework, it is up to the specific framework to
decide how it resolves a dependency in the case that multiple components export
the same dependency satisfying resource. Subsequently, the links in the overall

Reuse Frequency as Metric for Dependency Resolver Selection 169

dependency graph are actually more, if such multiple exporters exist. Selecting
any given resolution would give different metrics. Consider a situation similar
to the examples shown in Figure 2. In Example 1, we see component A that
depends on resource R1 which can be provided by the component B. Example
2 then displays the multiple resolver scenario. A’s dependency on R1 could be
resolved by either B or C. This effectively, leads to the situation where two
possible graph instances exist (i.e., Example 3).

Assuming one would apply PageRank to this scenario two different outputs
are possible. On the one hand, PR(A) = 0.15, PR(B) = 0.2775, and PR(C) = 0.15
on the other hand, PR(A) = 0.15, PR(B) = 0.2775, and PR(C) = 0.2775. To
remedy this issue, we propose to define the Reuse Frequency as follows:

Definition 2. Reuse Frequency
Let CS be a set of components. Let DG1,...DGn be all possible resolution graphs
of CS. Let the component rank CR(Ci, DGk) be the PR(Ci) in the graph DGk.
Let N(C,CS) be the number of DGs for the C in CS. Then the Reuse Frequency
of a component C is computed from the CR of C in all DGi in the following way:

RF(C) = CR(C,DG1) + CR(C, DG2) + ... + CR(C, DGn) / N(C,CR)

In other words: the Reuse Frequency of a component C out of a repository R is the
average of all component ranks of C in every possible resolving context out of R.

Consider Example 2 from Figure 2 again. Firstly, we need to calculate the
possible resolution graphs of the components A, B, and C. Example 3 shows
the two possible graphs DG1 and DG2. Subsequently, we can build the com-
ponent ranks: CR(A,DG1) = 0.15, CR(B,DG1) = 0.2775, CR(C,DG1) = 0.15,
CR(A,DG2) = 0.15, CR(B,DG2) = 0.15, CR(C,DG2) = 0.2775. It follows that
the Reuse Frequencies are: RF(A) = 0.15, RF(B) = 0,214, RF(C) = 0,214. The
two components B and C end up with a higher Reuse Frequency than A. This
is due to both of them being a resolver in one graph or the other. Note that
nevertheless, their RF is less than their PR would be in case they are resolvers
but higher than their PR in the case they were not.

In general, the Reuse Frequency gives a better estimation of the relative
importance than the PageRank due to the nature of component dependencies.
However, when locating components a resource discovery service should support
at least two different ways to search components: by what a component provides
and by what it requires. Subsequently, the question remains whether the Reuse
Frequency can be applied in both scenarios. In the definition given here, the
metric clearly targets the scenario where it is beneficial to prefer components
that are more important (i.e., have a higher likeliness to be reused). This can be
cumbersome when what one actually wants is to determine those components
that will make the most out of the already installed components (i.e., by what
a component provides). Consequently, the Reuse Frequency can be inverted:

Definition 3. Inverted Reuse Frequency
Let CS be a set of components. Let DG1,...DGn be all possible resolution graphs
of CS. Let INV(DGk) be the inverted graph where all the source and target of

170 K. Pauls and T.G. Bay

each link is exchanged. Let the inverted component rank ICR(Ci, DGk) be the
PR(Ci) in the graph INV(DGk). Let N(C,CS) be the number of DGs for the C
in CS. Then the Reuse Frequency of a component C is computed from the ICR
of C in all DGi in the following way:

IRF(C) = ICR(C,DG1) + ICR(C,DG2) +...+ ICR(C,DGn) / N(C,CR)

In other words: the inverted Reuse Frequency of a component C out of a repos-
itory R is the average of all component ranks of C in every possible resolving
context out of R where for each context the source and target of a dependency is
exchanged.

Example 2 from Figure 2 can be used as an example again. INV(DG1)
leads to B linking A. INV(DG2) leads to C linking A. It follows
that: ICR(A,DG1) = 0.2775, ICR(B,DG1) = 0.15, ICR(B,DG1) = 0.15,
ICR(A,DG2) = 0.2775, ICR(B,DG2) = 0.15, ICR(C,DG2) =0.15. Finally:
IRF(A) = 0.2775, IRF(B) = 0.15, IRF(C) = 0.15. Component A ends up with
a higher inverted Reuse Frequency indicating that it would integrate (i.e., make
use of) best with the other components.

3 ComponentGraph

The ComponentGraph is a Java and OSGi [6] based tool for the visualization of
component dependencies. Its main purpose is to visualize the component graph
of components of a repository.

Fig. 3. ComponentGraph showing three possible queries

Like the structure of html documents that are linked to each other, compo-
nents depending on each other span a directed graph. The component depen-
dencies can be viewed synonymous to the hyper-links in html documents. See
Figure 3 for an illustration of an ensemble of components that use each other -
the resulting graph looks similar to what we know from linked html documents.
The analogy is not complete - it is for example very common to have cycles for
the Web Graph while it is seldom for the ComponentGraph. ComponentGraphs
are the averaged dependency graphs of entities (See Figure 3 for an illustration
of a very small ComponentGraph):

Reuse Frequency as Metric for Dependency Resolver Selection 171

Definition 4. ComponentGraph

CG = (N,E)

where each node n ∈ N is a component and each edge e ∈ E is a dependency
among two nodes.

After constructing the Graph with components as nodes and component de-
pendencies as edges, the Reuse Frequency of the components is calculated. It
is stored along with the Graph nodes. The ComponentGraph is now complete
and can be used for assessing components. Figure 4 shows the ComponentGraph
tool displaying the averaged dependency graphs of a specific example repository
augmented with their popularity and the likelihood of each possible dependency
resolver.

Fig. 4. ComponentGraph Showing an Example Graph

4 Case Study

This section presents the application of our Component Assessment System to a
concrete component repository. The next paragraph briefly introduces the three
used technologies namely OSGi [6], Eureka [2], and Gravity [7], followed by the
case-study.

The Open Services Gateway Initiative (OSGi) framework and service specifi-
cation, was defined by the OSGi Alliance to deploy, activate, and manage service-
oriented applications dynamically. The OSGi framework, that sits on top of a
Java virtual machine, is an execution environment for services. It defines a unit

172 K. Pauls and T.G. Bay

of modularization, called a bundle, that is both a deployment and an activation
unit. Physically, a bundle is a Java JAR file containing a single component. After
installing a bundle, it can be activated if all of its Java package dependencies
are satisfied. Package dependency metadata is contained in the manifest of the
JAR file. Bundles can export/import Java packages to/from each other - these
are deployment-level dependencies. After a bundle is activated it can provide or
use service implementations of other bundles within the framework. A service
is a Java interface with externally specified semantics. When a bundle uses a
service, an instance-level dependency on the provider of that service is created.
Technically, the OSGi service framework can be boiled down [8] to a custom
and dynamic Java class loader and service registry that is globally accessible
within a single Java virtual machine. The custom class loader maintains a set
of dynamically changing bundles that share classes and resources among each
other and interact via services published in the global service registry.

Eureka is a network-based resource discovery service supporting deployment
and run-time integration of components into extensible systems using Ren-
dezvous’ DNS-based approach [9]. Publishing and discovery of components can
be performed in both wide-area and local-link (i.e., ad-hoc) networks.

Gravity [7] is a research project investigating the dynamic assembly of ap-
plications and the impact of building applications from components that exhibit
dynamic availability, i.e., they may appear or disappear at anytime. Gravity is
built as a standard OSGi bundle and provides a graphical design environment
for building application using drag-and-drop techniques. Using Gravity, an ap-
plication is assembled dynamically and the end user is able to switch at anytime
between design and execution mode. Eureka was integrated into the Gravity
user interface to enable end user discovery of components for integration into his
running application.

4.1 Component Discovery and Deployment Case Study

For this case-study we communicate with an OSGi component repository. The
discovered components are then fed back into an Eureka network, annotated with
their Reuse Frequency. This allows an ordering of the displayed components in
Gravity.

Eureka as a Component Metadata Provider allows extracting dependencies of
discovered bundles. Additionally, existing repositories can also be queried using
the Eureka API. In the next step, the ComponentGraph is created showing
a network of bundles connected by their dependencies. Since our Component
Assessment System is component model agnostic deployment and instance level
dependencies can be treated equally in the resulting view.

Component Discovery is enabled via a special filter integrated into the Com-
ponent Assessment System and applied in case a bundle is discovered. Subse-
quently, the filter uses Eureka to extract the dependencies of the bundle while
storing the metadata in an Eureka controlled component repository. The com-
ponent is now available to clients via Eureka using this repository. Additionally,
we write the Reuse Frequency into the component’s metadata.

Reuse Frequency as Metric for Dependency Resolver Selection 173

Reuse Frequency used as Order Relation in OSGi based applications has been
evaluated using the Eureka enhanced Gravity. As mentioned above, Gravity pro-
vides a resource discovery that enables the user to extend an application at run-
time. For example, an editor component could be extended by a spell-checker
or a buffer switcher. More specifically, the dependencies of the underlying com-
ponent serve as a means of filtering the suggested components. In a situation
where the amount of suggested components is small the order of the suggestions
has low importance. If many components are found, that resolve a specific de-
pendency, Reuse Frequency is used to order the displayed suggestions. The order
of the suggestion list provides the user with additional information. Firstly, it
is likely that by choosing one of the more prominent suggestions (i.e., one with
a higher Reuse Frequency) over a less prominent one with a similar or equal
functionality (e.g., two different spell-checkers are available) the one with the
higher importance is chosen. Secondly, by following the former approach the as-
sembled application will be more extendable since heavily reused components
will be added and therefore more suggestions will become available.

4.2 ComponentGraph Case Study

At the moment two free OSGi R3 [10] framework implementations are available.
Both projects provide a small component repository. Both contain the imple-
mentation of the OSGi R3 service specification. Oscar [11] from Richard S. Hall
is part of ObjectWeb [12] and Knopflerfish [13] is based on the Gatespace GDSP
OSGi framework. In order to present the ComponentGraph and to intuitively
validate the assumption that the visualization of component dependencies com-
bined with the calculation of their Reuse Frequency allows reasoning about the
popularity of components both repositories have been inspected. Future work will
include empirical analysis of other repositories and focus on conclusions that can
be derived directly from the visualizations or the calculated Reuse Frequencies.

Figure 5 shows a subset of the Oscar repository augmented with the Reuse
Frequency of the components. Due to the Reuse Frequency of the example one
can reason about the importance of the participating components. Furthermore,
information about the likeliness that a component may function because all of
its dependencies are satisfied is conveyed. The two components with the highest

Fig. 5. Partial ComponentGraph of Oscar’s Bundle Repository

174 K. Pauls and T.G. Bay

Reuse Frequency (JMX Bundle and Service Introspector) are self-contained (i.e.,
deployable without any assumptions about the availability of other components).
One step down the hierarchy the MBean Factory can be found - it has dependen-
cies on the two aforementioned bundles. At last the Service Notifier depends on
all of the other inspected components and has the lowest rank, because no other
components depend on it. This observations empirically support the intuitive
assumption that the Reuse Frequency can be used as an order relation as in our
Gravity case-study.

Apart from Oscar and Knopflerfish a third free OSGi implementation exists
supporting underlying the last release of Eclipse [14]. Eclipse is a kind of universal
tool platform. Eclipse uses it’s own OSGi framework implementation as a plugin
mechanism and provides the possibility to discover, deploy, and dynamically
integrate plugins (i.e., bundles) from remote sources. The entry point for the
remote repositories is the Eclipse web site. A ComponentGraph using Eclipse
plugins promises to be an overwhelming source for empirical validations of our
assumptions.

5 Related Work

The problem of selecting the best possible resolver of a dependency applies not
only to component or service based systems but to plugin frameworks as well.
In plugin based systems the dependencies are not imperative [15] [16].

Automatic component discovery is closely related to other search and match-
ing problems such as: text document matching, web search and web service
matching.

Text Document Matching and classification is a well studied problem in infor-
mation retrieval. Popular solutions to the problem are based on term frequency
analysis [17], [18], [19]. In our case term frequency can be used once we extend
our infrastructure to also include component documentation into the assessment
process. However it will be a supplementary information source to the depen-
dency relations that we are extracting from the source code or the component
repositories.

Web Search inspires techniques proposed in this paper. We compare compo-
nent architectures to the world wide web. We suggest addressing the component
searching problem specifically by using component specific information. Web
search should nevertheless influence component search since for example compo-
nent documentation is normally deployed on the web.

Web Service Matching. In Woogle [20] the authors propose unsupervised
matching of web services at the operation level. Web services comply to the
notion of a software component and the technologies shown for matching on the
operation level can contribute to the information stored in the ComponentGraph.

The Oscar Bundle Repository [21] is an incubator and repository for OSGi
bundles. It promotes a community effort around bundle creation by increasing
the visibility of individual bundles. OBR provides diverse simple access mecha-
nisms for the bundles in the repository.

Reuse Frequency as Metric for Dependency Resolver Selection 175

Knopflerfish’s Spin Visualization. Knopflerfish is an open source implemen-
tation of the OSGi framework. Apart from other extra functionality it provides
a view of installed bundles where the dependencies among bundles are shown.
The application used to visualize (Spin) allows selecting an installed bundle and
see how its dependencies are resolved.

Gravity’s Architecture Viewer allows introspecting the architecture of the
running application. In other words, a visualization of the currently installed
services together with their dependencies.

6 Conclusion and Future Work

In this paper we defined the Reuse Frequency as a metric for the relative
importance of components and presented how Reuse Frequency can be used
for component assessment. Together with the Component Assessment System
and the ComponentGraph and the Reuse Frequency calculation it contains, our
method can be applied to many different component repositories. Using Eureka
as a concrete example we demonstrated how Reuse Frequency establishes an
order on the components involved and can be used to compare the importance
of different components. The possibility to generalize our method to other
component technologies or component information of different granularity
makes it attractive for general component assessment. Future work includes
more assessments on large component repositories like the Eclipse plugins, the
Linux RPM archive or the archive of Debian packages. How we will address
versioning of components and integrate it with the Reuse Frequency is currently
investigated in this context.

Acknowledgments. We would like to thank Max Haustein for his help in the
conceptual design of the ComponentGraph and Manuel Oriol for providing us
with helpful comments on the draft of this paper. We also thank the anonymous
reviewers as well as the reviewers for an earlier version, which appeared as an
ETH Zurich technical report [22], for all their valuable comments.

References

1. C. Szyperski: Component Software: Beyond Object-Oriented Programming. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA (1998)

2. Karl Pauls and Richard S. Hall: Eureka - A Resource Discovery Service for Com-
ponent Deployment. In: Proceedings of the 2nd International Working Conference
on Component Deployment (CD 2004). (2004)

3. Sergey Brin and Lawrence Page: The Anatomy of a Large-Scale Hy-
pertextual Web Search Engine (last visit June 2005) www-db.stanford.

edu/ backrub/google.html.

4. webrankinfo.com: PageRank Explained (last visit June 2005)
www.webrankinfo.com/english/pagerank/#1.

5. Craven, P.: Google’s PageRank Explained and how to make the most of it (last
visit June 2005) www.webworkshop.net/pagerank.html.

176 K. Pauls and T.G. Bay

6. OSGi Alliance: OSGi Alliance. Official Web Site, http://www.osgi.org (2004)
7. Richard S. Hall and H. Cervantes: Gravity: Supporting Dynamically Available

Services in Client-Side Applications. In: Poster paper in Proceedings of ESEC/FSE
2003. (2003)

8. Richard S. Hall and H. Cervantes: An OSGi Implementation and Experience Re-
port. In: Proceedings of IEEEConsumer Communications and Networking Confer-
ence. (2004)

9. Apple Computer, Inc.: Rendezvous. Official Web Site, http://developer.

apple.com/macosx/rendezvous/ (2004)
10. The Open Services Gateway Initiative: OSGi Service Platform. IOS Press, Ams-

terdam, The Netherlands (2003) Release 3.
11. Oscar Community: Official Web Site (2004) http://oscar.objectweb.org.
12. Object Web: Official Web Site (2004) http://www.objectweb.org/.
13. Knopflerfish OSGi: Official Web Site (2004) http://www.knopflerfish.org/.
14. The Eclipse Foundation: Eclipse Platform - Technical Overview. Technical report,

Object Technology International Inc. (2003)
15. Chatley, C.R.: Magicbeans: a platform for deploying plugin (2004)
16. M. Oriol, G.D.M.S.: A disconnected service architecture for unanticipated run-

time evolution of code. IEE Proceedings-Software, Special Issue on Unanticipated
Software Evolution 151 (2004) 95–107

17. Scott Cost and Steven Salzberg: A Weighted Nearest Neighbor Algorithm
for Learning with Symbolic Features. Machine Learning 10 (1993) 57–78
http://citeseer.ist.psu.edu/cost93weighted.html.

18. Larkey, L.S., Croft, W.B.: Combining classifiers in text categorization. In Frei, H.P.,
Harman, D., Schäuble, P., Wilkinson, R., eds.: Proceedings of SIGIR-96, 19th ACM
International Conference on Research and Development in Information Retrieval,
Zürich, CH, ACM Press, New York, US (1996) 289–297

19. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text cate-
gorization. In Fisher, D.H., ed.: Proceedings of ICML-97, 14th International Con-
ference on Machine Learning, Nashville, US, Morgan Kaufmann Publishers, San
Francisco, US (1997) 412–420

20. Xin Dong et Al.: Simlarity Search for Web Services. In: Very Large Data Bases.
(2004) 582–599

21. Richard S. Hall: Oscar Bundle Repository - Official Web Site.
http://oscar-osgi.sf.net (2004)

22. Bay, T.G., Pauls, K.: Reuse frequency as metric for component assess-
ment. Technical Report 464, ETH Zürich (2004) www.inf.ethz.ch/research/

publications/techreports/show?serial=464&lang=en.

A. Dearle and S. Eisenbach (Eds.): CD 2005, LNCS 3798, pp. 177 – 180, 2005.
© Springer-Verlag Berlin Heidelberg 2005

ORYA: A Strategy Oriented Deployment Framework

Pierre-Yves Cunin, Vincent Lestideau, and Noëlle Merle

Adèle team, LSR – IMAG, 220 Rue de la Chimie,
Domaine Universitaire – BP 53, 38041 Grenoble Cedex 9, France

{Pierre-Yves.Cunin, Vincent.Lestideau, Noelle.Merle}@imag.fr
http://www-adele.imag.fr/

Abstract. The current trend consists in deploying, on each machine, a specific
version of an application, according to the choices of the enterprise and users,
with constraints verified by the target site. To support automated deployment,
we propose a model-based deployment framework named ORYA which allows
to define and execute deployment strategies. This paper presents and illustrates
the concept of deployment strategy supported by the framework.

1 Introduction

Various approaches exist to deploy an application on a set of target machines. One
possibility is to create a deployment plan and then to execute it. To produce automati-
cally this plan, we define models which describe units to deploy, target machines and
enterprise structure [1]. The application model defines the deployment unit (a version
of an application) with properties, constraints and dependencies. The site model de-
scribes the hardware and software configuration of a target machine with properties.
The enterprise model collects machines into groups and subgroups.

A property describes a feature of a unit or a machine. A constraint, associated to a
deployment unit, expresses a property the target must have. A strategy, attached to an
enterprise entity (group, machine), expresses a constraint imposed by the enterprise.

Section 2 presents fundamental aspects of our strategy-based approach.Section 3
presents a use case. Section 4 concludes with future works and objectives.

2 Deployment Strategies

Large scale deployment is a complex action that cannot be done by hand. Often the
deployers use in-house defined deployment strategies to ensure the right quality level
of operation (security, homogeneity, standards, …). In some approaches strategies are
included (hard coded) within the deployment tools [2]. Therefore a deployer cannot
define new ones, better adapted to his needs. Our objective is to help deployers ex-
pressing advanced deployment strategies and to provide a framework for piloting
strategy-based deployments. An outcome will be a new version of our deployment
environment ORYA [3, 4, 5] based also on the GDF experiment [6].

178 P.-Y. Cunin, V. Lestideau, and N. Merle

2.1 Approach and Algorithm Principle

We assume that the strategies are expressed only on sites and groups. Strategies be-
long to the enterprise and therefore are attached to the entities of the enterprise struc-
ture. Each strategy is applied to the current set of deployable units.

A strategy is a 3-uple <LogicalExpression, Activity, Choice> The Activity specifies
one phase of the deployment. In this paper we consider only the Initial Deployment
phase. During the Activity, the LogicalExpression is evaluated for all the current de-
ployable units, i.e. the current application structure (AS). This gives two sub-sets: the
“true set” and the “false set”. Then the Choice, its associated actions, is applied to
these two sets depending on the semantics of the strategy. The result is an AS made of
the remaining deployable units.

There exist many strategies, for example: enforce the same version on a set of ma-
chines, allow replacement of a version by a newer one, favor the deployment of a unit
having some characteristic (e.g. choose a unit written in Java instead of the same in
C++), deploy the dependencies of a unit before the unit itself, deploy a unit on a
group of machines before on another one, roll back during the execution of the plan,
due to a change of the environment (e.g. the needed resources are no more available).

The algorithm is a parsing of the enterprise structure(ES) with propagation of an
AS through the whole structure. On each node, strategies are applied in order to prune
the AS. On a machine node, the constraints of the units are checked.

Strategies can be classified in three main categories: strategies to select units hav-
ing specific properties, strategies to define the ordering of the plan and strategies used
during the execution of the plan (mainly to handle errors).

A strategy is defined by its basic behavior and the following features: 1) the scope:
a strategy may be attached to a group or a single machine, 2) the visibility: a strategy
attached to a group may or may not hide - may or may not be overloaded by - any
similar strategy expressed on a sub-node, 3) the propagation: a strategy attached to a
group may impose collecting information about the sub-nodes, 4) the precedence:
several strategies may have to be applied at the same time on the same node.

2.2 Strategies VERSION-RIGHT and VERSION-SCOPE

To illustrate some characteristics, we focus on two strategies .

1. Strategy VERSION-RIGHT is attached to a group or a single machine and can
be applied without additional information (e.g. from sub-nodes, if any). If Choice is
NO, units of the “true set” cannot be deployed on the machine(s of the group) and the
resulting AS is made of the “false set”. If Choice is ONLY, only units of the “true set”
can be deployed on the machine(s of the group)and the AS is made of the “true set”.

2. Strategy VERSION-SCOPE. is a complex strategy used to ensure coherence on
versions deployed on all the machines of a group. The semantics of the strategy de-
pends on Choice: a) if ANY, each machine may have a different version and the units
of the “false set” are discarded. b) if SAME-TRUE, the units of the “false set” are
discarded and one same unit, of the “true set”, should be deployed on all machines
and should be compatible with the configuration of each machine. c) other values are
possible, for example SAME-IF-TRUE means that each machine may have a unit of
the “false set” or the same unit of the “true set”.

 ORYA: A Strategy Oriented Deployment Framework 179

The application of the strategy is different for each value of Choice: a) if ANY, the
strategy is immediately applied at the level of the group node and the new AS is equal
to the “true set”. b) if SAME-TRUE, the “true set” is propagated as AS, through a
recursive parsing of the ES, together with a query about what units of this set can be
deployed . When this information is made available at the level of the group node, the
AS is constructed as the set of the units deployable on every machine. During this
recursive parsing local strategies VERSION-SCOPE or VERSION-RIGHTS on sub-
nodes have to be applied before treating the “propagated” query and set of units

3 Use Case

The two representations structures are shown in Fig. 1. The ES represents the target
on which to deploy. The AS represents possible units, with their characteristics and
dependencies. The deployer wants to deploy the application U on the machines of the
group G. G is composed of two groups G1, composed of machines M1 and M2, and
G2. G2 contains the machine M3 and the group G3, itself composed of machines M4
and M5. The machines have properties specifying operating system (OS), memory
capacity (Mem) and available disk space (Disk). Strategies VS (VERSION-SCOPE
strategy) and VR (VERSION-RIGHTS strategy) are defined, on nodes G and G1.

Fig. 1. Enterprise structure (ES) and Application structure (AS)

The application U is available in four versions, described by properties: type,
programming language, interface type. Each unit forces constraints : a set of possible
operating system, a minimal memory capacity, a minimal available disk space.

On G, the application of the strategy VS requires information from the sub-nodes.
The “true set” of units {U1, U3, U4} is propagated to G1 and G2. On G1, the strategy
VR is applied and the set {U1, U3} is propagated to M1 and M2. Then the constraints
are checked and U3 is discarded because it imposes Linux as OS. So the set {U1} for

180 P.-Y. Cunin, V. Lestideau, and N. Merle

M1 and M2 is sent back to G through G1. On G2, the set {U1, U3, U4} is propagated
to M3 and G3. The set {U1, U4} for M3 is sent back to G through G2. On G3, the set
{U1, U3, U4} is propagated to M4 and M5. The sets {U1} for M4 (U4 is discarded due
to the memory capacity) and {U1, U4} for M5 are sent back to G through G3 and G2.
Back to G: the strategy VS is finally applied and the AS is build as the intersection of
the sets of all the machines: {U1}. Therefore, in that example, only this unit could be
installed on all the machines.

4 Future Work and Objectives

We have defined and prototyped a design and execution framework. A set of basic
strategies has been defined The approach has been validated through real size experi-
ments [7] with simple strategies.

In the example we have not taken into account the dependencies that may exist for
each unit. Dependency units are units themselves. Trying to apply strategies to de-
pendencies introduces “meta” strategies, e.g.: should a strategy, applied to a unit, be
also applied to its dependencies ? Should we evaluate the LogicalExpression of a
strategy on (all) the dependencies of a unit ? Should we consider dependencies as
being standard units on which apply the strategy algorithm ? The approach we use is
an MDE (Model Driven Engineering) compatible one based on three interacting lev-
els: strategy instances, strategy model and strategy metamodel (meta-strategies).

References

1. Merle N., Un méta-modèle pour l’automatisation du déploiement d’applications logicielles.
DECOR’04. Grenoble, France. Octobre 2004.

2. Ayed D., Taconet C., Sabri N., Bernard G.: CADeComp : plate-forme de déploiement sensi-
ble au contexte des applications à base de composants. 4ème Conférence Française sur les
Systèmes d’Exploitation (CFSE’05). Le Croisic, France. 5-8 avril 2005

3. Lestideau V., Belkhatir N., Cunin P.-Y.: Towards automated software component configura-
tion and deployment. PDTSD’02. Orlando, Florida, USA. July 2002.

4. Lestideau V.: Modèles et environnement pour configurer et déployer des systèmes logiciels.
PHD Thesis, Université deSavoie, December 2003, http://www-adele.imag.fr/
Les.Publications/BD/PHD2003Les.html

5. Merle N., Belkhatir N., Open Architecture for Building Large Scale Deployment Systems
The 2004 International Conference on Software Engineering Research and Practice
(SERP'04), Las Vegas, Nevada, USA, June 2004

6. On-demand Service Installation and Activation with OSGi. ObjectWebCon05 : Fourth
Annual ObjectWeb Conference. January 2005,Lyon, France.

7. Centr’Actoll web site : http://www-adele.imag.fr/Les.Groupes/centractoll/index.html

A. Dearle and S. Eisenbach (Eds.): CD 2005, LNCS 3798, pp. 181 – 195, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Deployment of Infrastructure and Services in the Open
Grid Services Architecture (OGSA)*

Paul Brebner1 and Wolfgang Emmerich2

1 CSIRO ICT Centre, PO Box 664, Canberra, ACT 2601, Australia
Paul.Brebner@csiro.au

http://www.ict.csiro.au/staff/paul.brebner
2 Department of Computer Science, University College London,

London WC1E 6BT, United Kingdom
W.Emmerich@cs.ucl.ac.uk

http://www.cs.ucl.ac.uk/staff/W.Emmerich

Abstract. The ability to deploy Grid infrastructure and services across organ-
izational boundaries (rapidly, reliably, and scalably) is critical for the success of
large-scale service based grids such as OGSA. We report the results of the UK-
OGSA Evaluation Project infrastructure and services deployment experiments,
and analytically compare application versus service deployment. The use of a
3rd party component deployment technology to remotely automate installation
and service deployment is discussed, and outstanding problems and potential
solutions and benefits are presented. We conclude that grid deployment must be
treated as a first-order activity by integrating secure deployment capabilities
into the middleware, to enable deployment of secured infrastructure and ser-
vices across organizations.

1 Grid Deployment Introduction

The UK Open Grid Services Architecture (OGSA) Evaluation [1] was a one year
project to establish an experimental OGSA-based [2] grid for the UK E-Science
community. The novel focus of the project was to gain insight into issues related to
deploying OGSA across organizational boundaries from software engineering and
architectural perspectives. Globus Toolkit 3.2 (GT3.2 [3]) was chosen as the exemplar
OGSA technology, but the evaluation was designed for the conclusions to be valid for
other Service Oriented Architecture (SOA) infrastructures, including GT4. This paper
is based on reports and presentations documenting the experimental outcomes of the
project [4, 5] and an analytical evaluation of Globus mechanisms [6].

A SOA supports distinct lifecycle steps, namely service development, service de-
ployment, service registration, service discovery and service consumption. In an
intra-organizational enterprise context, there are two distinct roles associated with
these steps: Provider and Consumer. The provider is responsible for development,
deployment and registration of services behind a firewall. The consumer is typically

* This research was funded under EPSRC grant GR/S78346/01.

182 P. Brebner and W. Emmerich

external to the organization, outside the firewall, and discovers and consumes ser-
vices. The provider role is therefore intra-organizational, while the consumer role is
inter-organizational. However, in the Grid community the role division is different.
End-user scientists typically develop their own applications, locate resources to run
them on, deploy and execute them on these resources, and manage them. The focus is
on end-user development, deployment and use, resulting in an overlap of provider and
consumer roles, crossing organizational boundaries and firewalls.

GT3 supports end-user deployment of applications using mechanisms including:
Grid Services, Grid Security Infrastructure (GSI), Master Managed Job Factory Ser-
vice (MMJFS), Resource Specification Language (RSL-2), data transfer services
(Grid File Transfer Protocol - GridFTP, Global Access to Secondary Storage –
GASS) and index services (Globus Monitoring and Discovery System - MDS3). For
authorized users these allow: job submission services (MMJFS) to be discovered;
applications and data to be transferred onto the target machine; resources requested,
scheduled and allocated; jobs submitted, run and monitored; and end-users notified
upon completion - across organizational boundaries and firewalls.

However, GT3 does not support cross-organizational end-user deployment of grid
services. This means that an end-user can not easily deploy their science code to re-
sources behind firewalls as a “1st order” grid service. A grid service is an implemen-
tation of a Grid Service port type, described (with GWSDL a grid extension of WSDL
1.1), packaged (in a Grid Archive “GAR” file), deployed across organizations to all
the containers available to a Virtual Organization (VO), registered in a VO index
service, and is discoverable and callable by all the users in the VO who are authorized
to use it.

Support for end-user deployment of applications, but not services, reflects two dif-
ferent ways of using a SOA for Grid computing: resource-centric versus service-
centric. Scientific applications have typically been large monolithic applications writ-
ten in legacy languages (e.g. Fortran), for proprietary high performance computing
(HPC) architectures. GT3 is designed as a resource-centric infrastructure to allow
legacy applications to portably utilize heterogeneous Grid resources. GT3 uses ser-
vices as infrastructure services, to resource science as applications. End-users are not
expected to deploy new services, but to use pre-existing services to deploy and run
their applications. This approach is resource-centric, resourcing by services, Web
Services enabling of Grids. We define this as a “2nd order” approach, since science is
not exposed directly as grid services, only indirectly via infrastructure services. The
other approach is service-centric, resourcing of services, Grid enabling of Web Ser-
vices. We define this as a “1st order” approach, since it enables science to be de-
ployed, resourced, and used directly as distinguished grid services.

SOAs exhibit a number of desirable features that are lost if direct execution of sci-
ence as 1st order services is not supported, including: rich SOA patterns (e.g. proxies
for monitoring service use); work-flows for the design and execution of flexible and
portable applications and services (through recursive composition); loose coupling of
client and service by registration/discovery of services and service descriptions and
dynamic binding; and interoperability by conformance to Web Standards.

The original intention of GT3 was also to enhance the implementation of Grid ser-
vices by extending Web Services with a rich component model. In fact, OGSI [7] was
explicitly based on J2EE [8]. The OGSI component model includes a set of conven-

 Deployment of Infrastructure and Services in the OGSA 183

tions for service naming and reference, common and extended interfaces and behav-
iour support for dynamic instance-specific meta-data, and run-time support to manage
service lifecycles. Service level security provides a fine-grained security model allow-
ing different levels of access to services, instances and methods. The component
model can be used for the development of 1st order science services as well as infra-
structure services.

A non-trivial aspect of deployment is Grid infrastructure installation. We consider
this to be in the scope of deployment requirements since correct installation and con-
figuration of infrastructure is a precondition for service deployment.

This paper focuses on GT3 infrastructure, application, and service deployment by
end-users across organizational boundaries. Sections 2 and 3 compare GT3 installa-
tion and deployment for 1st and 2nd order approaches. Scenarios for installation and
deployment for each approach are described and an analysis is performed based on
the impact of GT3 components and mechanisms on quality attributes. Section 4 de-
tails the results of experiments to automate remote installation and deployment, and
section 5 reviews related work. Finally, in section 6 we conclude with outstanding
problems, potential solutions and benefits of supporting deployment as a 1st order
activity in OGSA.

2 Installation of Grid Infrastructure

The grid infrastructure installation scenario steps are as follows: obtain infrastructure
components (Globus, and supporting software); discover and select hosts to install to;
determine host specific configuration information; install on selected hosts; configure
installation on each host; secure installation on each host; start/stop container and
services. Related tasks include: Validate installation; discover installation state (what
is installed, versions, and configurations); trace installation progress; detect and debug
installation failures; reinstall selected components; un-install selected components;
install client-side infrastructure and security.

Several months were spent installing GT3 infrastructure across the project’s four
test-bed sites [4]. The installation experiences varied because of a combination of
factors including: platform heterogeneity; site-specific security, and access policies;
degree of familiarity with Globus technology; and GT3’s fragile build process and
complex package structure. Consequently, substantial effort was expended diagnosing
and rectifying installation, configuration and access problems, resulting in the follow-
ing insights.

2.1 Common Infrastructure for 1st and 2nd Order Approaches: Core Package,
Tomcat Container, Security, Globus Monitoring and Discovery System
(MDS3).

Core Package. Installation of the Core package (pure java container related services)
and container (e.g. Tomcat) is relatively straightforward, but requires understanding
and configuration of Globus and site-specific requirements and policies for installa-
tion, access, accounts, and security. On some sites Globus was treated as production
software and installed by systems administrators, entailing extra effort to separate and

184 P. Brebner and W. Emmerich

support roles (for installation, configuration, container management, and deploy-
ment). Testing the core installation without security is feasible and is an important
step, since it is critical to ensure basic access and functionality before enabling secu-
rity, as security interferes with remote testing.

Security. Security infrastructure is required for the 2nd order approach, but only for a
secured production version of the 1st order approach. In theory the 1st order approach
does not require the complete “All Services” package to be installed (the complete
middleware stack, which is not pure Java), but some sites installed it for a variety of
reasons making security more difficult to install, configure and use than expected [4].

In order to emulate a realistic production grid environment we requested and ob-
tained host and client certificates from the UK e-Science Certification Authority [9].
Accounts were requested and created for users on each site, and client certificate
subjects and account mappings configured in “grid-map” files on all nodes. Hosts
were configured to use host certificates, client-side security infrastructure was in-
stalled and configured, and client-side code was modified to call services with the
required security protocol. Unfortunately there is no portable client-side package
including security and we were unable to get secured client-side code working under
Windows. There are significant problems with certificate management, including the
application, acquisition, storing, use, renewing, and revocation processes. A major
problem is the lack of scalability of installation and management of security, particu-
larly due to the necessity to provide a unique local account per user, and to map user
certificates to local accounts in grid-map files.

It may be possible to run services securely without having individual client ac-
counts on the host machines, making the security process more scalable. It is also not
obvious that the GSI approach to security is either sufficient or necessary for a 1st
order approach, since GSI was designed for the 2nd order approach and supports proxy
certificates, single sign-on, and delegation of credentials. A different security infra-
structure may be more appropriate for a 1st order approach, for example, one support-
ing role based authorization.

Testing and debugging the installation with security enabled is difficult. It is im-
possible to determine the security configuration of containers and services remotely
and to debug calls to secure stateful service instances, since these preclude the use of
non-invasive tracing techniques such as proxy interception of calls. It is essential to
install infrastructure with tracing and debugging components enabled (E.g. the Axis
SOAP handler, SOAPMonitor, and remote Tomcat management; although these have
their own security requirements).

MDS3. MDS3 supports a rich index service model, allowing Service Data Elements
(SDEs) to be collected, updated, aggregated, cached, persisted and queried for service
instances in a variety of configurations. MDS3 was relatively easy to install, config-
ure and test across sites, although it is not part of the core package, many manual
configuration and testing steps were required, and configuration errors were not dis-
covered until run-time.

Data Transfer. For 1st order services we assume that SOAP attachments are suffi-
cient for data transfer. In practice they are unlikely to be adequate due to bugs in
SOAP attachments in Axis/Globus, a practical upper limit to attachment sizes of 1GB,

 Deployment of Infrastructure and Services in the OGSA 185

limited scalability, and incompatibility with security. Otherwise the OGSA data trans-
fer services must also be installed (but are problematic to use with services, see [5]).

2.2 Extra 2nd Order Infrastructure: “All Services”, and Data Transfer

The 2nd order approach needs the “All Services” package to be installed and config-
ured, including MMJFS (the Job Manager, part of the Web Service Globus Resource
Allocation Manager, or GRAM, component), a resource scheduler, and data transfer
services. We did not attempt to use a real resource/batch scheduler as Globus does
not come with one by default, but used the simpler MMJFS fork instead.

The non-Java packages, and even some of the Java packages, require compilation
as part of the installation process. Correct versions and in some cases “brands” of
supporting software must be used to guarantee a successful build. Globus is primarily
targeted at Linux and support for other flavours of UNIX and other platforms is lim-
ited. We experience compilation issues on both Linux and Solaris and the build proc-
ess was fragile and error prone. Due to version churn and build problems this process
had to be repeated frequently, starting from a clean slate each time to eliminate de-
pendencies on previous attempts. Some sites reported issues installing different ver-
sions of “All Services” on the same machine.

GridFTP is a legacy Globus component and not well integrated with GT3 services
and the container. To support file staging with MMJFS, GridFTP, or a GASS server
(for smaller files) must be installed on both server and client machines [10]. Due to
problems originating from poor documentation, lack of example code, bugs in the
GridFTP server, and certificate issues, we were unable to get data transfer working
correctly across sites [5].

2.3 Analysis

Infrastructure weaknesses include portability, build-ability, and packaging. There is a
need for well-supported binaries or portable code (i.e. pure Java), better integration
and packaging of components, support for adding (or removing) selected components
from a working installation, and a portable client-side package (including security).
Portability contributes directly to the ability to automate the installation process re-
motely and therefore scalability of installation. The 1st order approach is intrinsically
more portable, since only a container and security are essential, whereas the 2nd order
approach relies on legacy non-Java components which are less portable and require
more effort to build, install, configure and test before use.

Support for remote viewing of installation state is minimal, with no way to deter-
mine what packages and versions have been installed, or how far the installation has
proceeded. One obvious problem for security scalability is creating and mapping user
certificates to local accounts. Security infrastructure processes and management, in-
cluding certificates and accounts, need improvement in order to be more useable,
scalable and easier to automation. Apart from security, any organization, machine or
site-specific configuration makes it more difficult to automate a scalable installation
process. For example, installation location, port number, user access, and site-
specific security policies must be successfully negotiated and configured.

186 P. Brebner and W. Emmerich

We conclude that the infrastructure for 1st order services is amenable to automatic
remote installation since it can be better packaged, requires less building, is more
portable, requires less configuration, is easier to test incrementally (without security,
and then with security), and in theory can utilise a simpler security model. However,
improvements in processes, tools and technologies are also required to support: re-
mote automatic installation and configuration; separation of installation roles; moni-
toring of installation progress and state; visibility of components installed and ver-
sions, and security infrastructure; and debugging of installations.

3 Deployment of Services and Applications

In the standard 1st order SOA world, services are deployed within an enterprise, be-
hind firewalls, by enterprise developers and deployers. End-users typically do not
(and can not) deploy services. However, in the grid community deployment needs to
be supported across firewalls and enterprise/organizational boundaries (i.e. inter-
enterprise), for different types of deployers, some of whom are essentially end-users.
For the deployment scenario, we assume: a set of Grid resources (possibly heteroge-
neous); shared by a number of VOs, but with at least one centralised index service for
each VO listing the resources available to the users of that VO; end-user deployment;
portable service/application code; and, manual deployment of 1st order services by
Systems or Grid Administrators on each site.

3.1 Grid Service Deployment (1st order)

The scenario for grid service deployment is as follows: Configure service specific
security; validate deployment; discover hosts available; select hosts to deploy to;
deploy service to selected hosts; register the services in an index service; enable or
disable the services. Related tasks include: Test to ensure that services are registered,
discoverable and callable by specified users; un-deploy service; redeploy service;
trace progress of deployment; debug deployment failure.

Security Configuration. Given a GAR file, the deployer unpacks it, configures secu-
rity for the target host, and then repacks ready to deploy. We assume that authentica-
tion is specified at development time in a custom service security configuration file.
This allows the developer to specify the minimum level (and other permissible levels)
of security for each service and method, but not who is authorized to use them. Au-
thorization is specified in service specific gridmap files. A gridmap is an Access Con-
trol List that specifies which users have access to a service. It has a list of distin-
guished names and maps each name to a user account. The requirement to map user
certificates to unique local accounts in gridmap files reduces the scalability of the
deployment process. This is the default approach, but a number of alternatives are
possible. Using role based security would reduce the complexity of managing grid-
map files, but authentication is still a problem, requiring user certificates, proxy cer-
tificates, and certificate subjects. One simplification is to allow anonymous users
(users who share the same credentials) so that nodes only need to know about the
mapping between classes of anonymous users and roles. However, this allows the

 Deployment of Infrastructure and Services in the OGSA 187

possibility for rogue users to misuse their roles without being able to be traced as
individuals. It is possible that a common account could be used in gridmap files
(every user would still have a unique certificate). Even though there would then be no
privacy or isolation between users mapped to the same account (the common account
functioning more as a “role”) this may be a reasonable compromise.

Validation and Testing. Ideally the GAR file, deployment descriptors, and security
configuration, could be validated before deployment, but this is not supported. Errors
may be discovered during deployment, or worse, at run-time, which impinges on
scalability, availability and reliability of deployment and use.

Host Discovery and Selection. We assume that services are portable, and that they
will be deployed to all resources in a VO without reference to the base capacity, cur-
rent resources, or load on each machine. This is a reasonable assumption since newly
developed Grid Services are more likely to be portable compared with legacy applica-
tions deployed using MMJFS.

Deployment. For the experiment deployment was initially performed locally on each
machine with the GT3 deployment scripts. The mechanism for manual deployment is
to make the GAR file available to the deployer on each site and then wait for them to
deploy it, restart the container, and register the service in the central VO index ser-
vice. Restarting the container is problematic if services are in use unless they support
persistence across container restarts. So-called “hot” deployment would be an advan-
tage; otherwise a workaround is to have separate containers (or multiple Web Appli-
cation Contexts using Tomcat) for each service, user, or VO. To un-deploy/redeploy a
service, the container is stopped, the service un-deployed, a new version of the service
deployed if required, and then the container is started again. The MDS3 entry for the
service must be updated or removed.

Service Registration. MDS3 is designed to support a meta-data oriented registry
service, various topologies (e.g. hierarchical aggregation), and soft-lifecycle man-
agement/update of service instance state changes. This makes it more than a simple
UDDI registry service. It takes multiple steps to register a service in one container
into a remote index service. This requires manual local server-side editing of configu-
ration files, and information entered during configuration is not checked until execu-
tion time. In a typical SOA the directory service contains information about the ser-
vice location, along with service description (WSDL). Our experiments did not re-
quire dynamic discovery of service descriptions since client-side code (including
stubs) was developed at the same time as services. However, this capability is critical
for scalable, flexible and robust SOAs, and we are obliged to assume that MDS3
supports registration and discovery of GWSDL service descriptions.

Non-functional Deployment Attributes. Using a manual deployment process the
performance (time to deploy to a node), scalability (how many nodes can be deployed
to with increasing nodes, services, and users), reliability, repeatability, traceability,
and debuggability are all extremely poor. The security of deployment is only moder-
ate since the process is manual and error-prone. It assumes secure transfer of GAR
files to the deployers, that they are not tampered with by the deployers, and that only

188 P. Brebner and W. Emmerich

services from permitted developers are deployed. Validating the security configura-
tion of deployed services remotely is non-trivial. Scalability of security configuration
maintenance is an issue, requiring authorized users to be added/removed from service
specific security configuration files. This currently entails editing of grid-map files
and then redeployment and restarting of the container. More seriously, in the absence
of automated/remote deployment there is no formal security model for inter-
organizational/VO deployment.

In the absence of any other resource management mechanism, deploying a service
on a machine and giving users permission to use it gives them the “right” to consume
resources on that machine simply by invoking it. The default service resourcing
model is shared, not exclusive, but with no guaranteed QoS unless the hosting envi-
ronment can provide it at the time of use taking into account both base-level capabil-
ity and actual load. Extra resource scheduling or load-balancing mechanisms are re-
quired to ensure QoS, fair sharing of resources, and to prevent resource saturation.

3.2 2nd Order Application Deployment

The 2nd order application scenario is different, as using MMJFS an executable is de-
ployed (or “staged”) immediately prior to use as part of the same invocation of
MMJFS by the same user. The steps are as follows: Prepare RLS-2 file based on
application requirements; discover and select MMJFS services; call selected MMJFS
with RSL-2 file; wait for success of staging, notification of job submission, and even-
tual termination.

MMJFS. MMJFS/GRAM is a basic job submission service (without scheduling) that
takes an RSL-2 XML file and a user certificate as input, and submits the job to the
underlying queue with the proper invocation syntax, running as the user account
mapped to the certificate. MMJFS supports staging of executables using a GASS
server which runs on the GRAM client and negotiates data transfers with the remote
MJS service [12]. MMJFS services are assumed to be registered in a VO index ser-
vice to be discovered at deployment time. We assume that deployment occurs to all
of the resources available to a VO simplifying the problem of matching application
requirements to resources (for example, platform and concurrency). Otherwise, the
resource management system in each organization is responsible for discovering and
allocating appropriate resources, although how this is coordinated globally across
organizations is unclear. The distinction between Deployment and Use phases is
somewhat artificial as file staging (i.e. deployment) is just one of the operations per-
formed by MMJFS once invoked. The MMJFS Start Operation steps are as follows:
client credential delegated to MJS instance, file staging performed, submit job to
scheduler. There is a strong assumption that an application is deployed and then used
immediately by the same user, although there may be a substantial delay before the
job is executed if using a job scheduler. This limits the options for deploying/staging
an executable in advance, splitting deployer and user roles, and may impact scalabil-
ity, performance and flexibility [11].

Security. One distinction between the 1st and 2nd order approaches is security related
to deployment – both configuration of security during deployment for subsequent use

 Deployment of Infrastructure and Services in the OGSA 189

and security of deployment. The 1st order approach enables services and methods
deployed in a container to have different security settings. Due to the lack of an
automated/remote deployment mechanism there is no explicit security model for
deployment. The 2nd order approach imposes one security model on deployment and
execution, due to the use of one mechanism for both tasks – i.e. the security configu-
ration of MMJFS. Therefore only one set of security policies can be applied, to both
the deployment and execution, of all jobs in a container. If a user has permission to
use MMJFS in a given container, then they can deploy and use any application in that
container. However, finer grained security may be provided by a resource manager
and the use of virtual containers as sand-boxes would reduce security problems.

Data Transfer, Index Services, and Tracing. GridFTP and a GASS server must be
installed and working on servers and client machines. It is unclear if there is any ex-
plicit un-deployment capability and if/when or how files are cleaned up/deleted.
MMJFS is already registered in the index service, but MJS instances (returned from
the MMJFS Create Service operation) can also be registered to enable management of
individual jobs (allowing for long-running batch jobs). There is some support for
tracing the progress of MMJFS events and exceptions since MMJFS was designed to
manage job execution. However, only minimal information is available remotely.

3.3 Analysis

Remote deployment of “applications” is straightforward with the 2nd order approach,
although more infrastructure must be installed (MMJFS, security, resource manager,
data transfer services). There is support for resource matching and some support for
deployment tracing/debugging. There is no capability for “application” registration,
explicit deployment packaging, or validation of the deployment prior to use. There is
an explicit security model for deployment, which is just the MMJFS security settings,
and therefore identical for deployment and job submission for the whole container.
Deployment and Use are therefore indivisible, both temporally, for iden-
tity/authentication, and for authorization. There is some support for trac-
ing/debugging, but it is impossible to test MMJFS deployment without security being
enabled. Deployment at least guarantees job submission and therefore (eventually)
resourcing.

There is no in-built support for remote deployment of Grid Services and therefore no
formal model of deployment security, no support for resource matching (although port-
ability of services can reasonably be assumed), and very poor non-functional deploy-
ment characteristics. There is explicit Grid Service deployment packaging (GAR file)
and it would be possible in principle to validate at least parts of the deployment prior to,
or during, deployment. Service registration is well supported and we assume that it is
possible to register GWDSL service descriptions. The scalability of the default 1st order
service security model is poor, requiring configuration for each site to map local ac-
counts to user certificates. However, testing service deployment is feasible prior to secu-
rity being enabled and a simpler more scalable security model may be possible. De-
ployment allows for immediate invocation but does not guarantee QoS.

190 P. Brebner and W. Emmerich

4 Remote Deployment with SmartFrog

Due to the lack of support for automated remote deployment of Grid infrastructure
and services across organizations in the Globus middleware stack we trialled Smart-
Frog (a 3rd party component deployment technology [14]) for Grid deployment and
conducted five experiments as follows: intranet deployment; internet deployment;
secure deployment; deployment of secured infrastructure; and deployment of services.

Deployment on an Intranet: Within the Laboratory. A project at UCL [15] inves-
tigated the use of SmartFrog to deploy GT3.2 on an intranet in a laboratory setting.
This involved: configuring SmartFrog to remotely install and start the core GT3 pack-
age and Tomcat container; deploy sample grid services across multiple machines in
the laboratory; and the development of a management console to control the process.
The solution worked well in the laboratory but relied on the freedom to install and run
a new installation of GT3 and supporting software as an unprivileged user on a public
file system. It was also constrained to the deployment of core/container infrastructure
only, over a LAN, with no security (either for deployment, or for the GT3 infrastruc-
ture), with an identical configuration for each installation. A GUI management con-
sole was provided for selecting target machines (based on available resources) and
installing, configuring, starting and stopping the infrastructure or services. The pro-
gress of the installation along with any exceptions could be monitored and a partial
(services) or complete (infrastructure) uninstall performed. The deployment process
was scalable for increasing numbers of machines and was portable across different
versions of Linux/UNIX.

Deployment on the Internet: Across Sites and Firewalls. Given the success of the
intranet experiment we moved out of the laboratory setting and applied the experi-
mental SmartFrog infrastructure across the internet to the OGSA test-bed sites.
However, the new environment introduced a number of difficulties. We were unable
to get the collection of components developed in the laboratory (a version of Smart-
Frog, Grid specific deployment files, and GUI management console) working to-
gether correctly across sites, although deployment was demonstrated across an unse-
cured port in a limited test situation using the default unmodified SmartFrog package
and examples. Because of differences in site security policies and the perception that
SmartFrog is a perfect virus propagation mechanism it was impossible to open a new
SmartFrog daemon listener port across all the test-bed sites. In theory RMI over
HTTP (tunnelling [16]) could be used over the already open grid container port, but
secure deployment was still a precondition.

Secure Deployment. SmartFrog and Globus use different security models and cer-
tificates. In order to deploy infrastructure securely with SmartFrog an independent
(and therefore redundant) security infrastructure, process, and certificates is required,
which introduces yet another layer of complexity into already complex infrastructure
and security environments. Nevertheless, the SmartFrog security architecture is rela-
tively sophisticated and includes code signing and multiple trust domains, and is well
designed for the deployment domain. Issues related to SmartFrog security configura-
tion, use, and debugging prevented us from getting it working correctly across sites,
illustrating the difficulties of debugging security infrastructure, and secured infra-
structure. Security and debugging are mutually exclusive.

 Deployment of Infrastructure and Services in the OGSA 191

Deployment of Secured Infrastructure. The next challenge was to use SmartFrog
to install, configure and run a secure GT3 installation and container. The first prob-
lem is the requirement for the deployment infrastructure to have access to host certifi-
cates, user certificates, and local accounts, and to prepare customised deployment
configurations (e.g. the gridmap files) for each site. It is possible in theory to use a
generic single user to run all the jobs for a node and it may even be the case that for
non-mmjfs services a real user account is not needed at all [17]. However, there are
significant issues to do with trust, security and auditing if the binding between users
and accounts is weakened. A role-based security mechanism is an alternative [18]. A
fundamental obstacle is if the SmartFrog daemon needs to run as a privileged user
such as “root”, as is the case for configuration of the standard GT3 production secu-
rity environment. The “–noroot” option is an alternative for configuring GT3 security
without root permission, but it is unlikely to be appropriate for production environ-
ments [19]. One workaround for the security installation problem is for the first in-
stallation and security configuration to be done locally and manually, enabling subse-
quent updates or (re-)installations for different user communities to proceed automati-
cally/remotely by reusing the first security configuration. As long as there is one cor-
rectly installed and secured version, other versions (of at least the GT3 core package)
can be installed by non-root users.

Deploying Services. The final goal was deploying services to an already deployed
infrastructure. In the laboratory SmartFrog demonstrated the ability to deploy ser-
vices to a container and then start the container. However, because of the lack of
“hot” deployment in GT3 stopping and restarting a container that is in use is unlikely
to be acceptable. “Hot” deployment and/or running multiple real (or virtual) contain-
ers (one per user or VO) are possible tactics. However, another problem is deploying
secured services since these may require both service and site specific configuration.

5 Related Work

This section reviews related work in deployment and security. Because of the func-
tionality available at deployment time and the complexity of deployment, deployment
is an explicit role in the EJB/J2EE specification [20] and is supported in J2EE prod-
ucts. Some products go further than the specification and provide remote deployment,
automatic updating of client-side code from a server, and one-step deployment of
components to a cluster. Java Web Start and the underlying Java Network Launch
Protocol (JNLP) provide a simple way of end-users installing and running new (cli-
ent-side) Java programs over the Web [21]. Operating System patch management
systems such as Microsoft’s Windows Update could be applied to middleware [22].

In the Java community there is a view that J2EE is too heavy-weight and POJOs
(Plain Old Java Objects) are enough. With the support of light-weight containers such
as Spring/Hibernate POJOs can be deployed with close to zero effort, as deployment
dependencies are resolved by containers using reflection [23]. Inversion of Control
(IoC) and Aspect Oriented Programming (AOP) approaches to component portability
could be applied to Grid deployment [24, 25].

Problems with deployment in Globus have been documented [26], as have Grid
deployment Use Cases which complement our deployment scenarios [27, 28]. Other

192 P. Brebner and W. Emmerich

approaches and tools for Grid deployment include GITS [29], distributed Ant [30],
the IBM autonomic deployment framework [31], deployment planning [32],
PACMAN [33], GPT [34], and Virtual Machines [35]. None of these deal adequately
with the deployment of services.

Work that specifically targets Grid service deployment includes model based de-
ployment [35], dynamic deployment [37], QoS-aware deployment [38], dynamic
service architecture [39], hot service deployment [39], grid service GUI [41], remote
deployment interface [42], and two projects using SmartFrog [43, 44]. Related work
on web services deployment includes remote deployment in Tomcat [44], Axis [46],
and P2P web services deployment [47]. However, despite acknowledging the impor-
tance of the problem and providing a variety of solutions, we do not believe that any
single existing approach adequately deals with all aspects of secure deployment of
secured Grid infrastructure and services across firewalls.

An increasing number of projects are working on solutions to security issues and
better tools and procedures are likely [11, 18, 47-50]. However, it is critical to ensure
that these work seamlessly with services. CAS [50] does not work with grid services.

6 Conclusions

Remote grid deployment infrastructure needs to: support deployment of infrastructure
and services across organizational boundaries and firewalls; be secure; be able to
deploy secure infrastructure; be manageable (deployment state, progress and errors
monitored, and debugged and fixed); support configuration and version management,
recovery and audit trails; be reliable and repeatable; maintain consistent versions and
sets of components and services for a VO across heterogeneous resources; support
multiple scenarios (e.g. un-deployment), roles, and role/trust delegation; be scalable
(with increasing users, nodes, and services); be usable (easy to install, use and admin-
ister, portable, GUI tool support).

A fundamental problem is how to bootstrap the installation process. Which comes
first: The deployment infrastructure or the grid infrastructure, the deployment security
or the infrastructure security? On the face of it, the easiest solution is to start with a
light-weight, portable, easy to install and secure, deployment infrastructure which is
then used to bootstrap the installation of the Grid infrastructure, security and services.
This is the approach we took with SmartFrog and which was demonstrated to work in
the laboratory albeit with a number of simplifying assumptions. However, out of the
laboratory, installing, configuring, securing, and debugging extra and redundant infra-
structure for deployment presents the same types of problems as does the installation
of grid middleware itself. The duplication of the security infrastructure and extra
issues of trust by Systems Administrators, and use of the deployment infrastructure to
secure grid infrastructure are significant barriers to this approach.

An alternative approach is to first remove the requirement for a redundant deploy-
ment-specific security infrastructure by using a lightweight security mechanism as the
core of both the deployment and grid infrastructure. This allows the security mecha-
nism to be set up once correctly and then used as the basis of deployment and infra-
structure security. We believe this is feasible as the security requirements for 1st order
service security and deployment are simpler, or at least different, to what the GSI
model is designed for. Ideally the security model would be composable (or extensible)

 Deployment of Infrastructure and Services in the OGSA 193

so that its capabilities could evolve [53]. We have observed that the core GT3 pack-
age is relatively lightweight and portable compared with the other packages. It is
therefore possible to remove the requirement for a redundant deployment infrastruc-
ture by including basic remote deployment capabilities in the core GT3 package.
Assuming initial manual deployment of the core grid infrastructure, including basic
deployment and security, the grid infrastructure itself can then be relied upon to sup-
port subsequent remote automated infrastructure re-installation/updates and service
deployment. That is, deployment is a first-class citizen and adding it as an after-
thought, or as an extra redundant infrastructure is best avoided. It needs to be built
into the middleware stack. It would also be feasible to expose the middleware’s re-
mote deployment capability as a “service deployment service” in the container (using
SOAP attachments to transfer GAR files). Finally, we suggest that the problem of
debugging and rectifying run-time failures can be (partially) solved by making critical
deployment context information available at run-time, along with the ability to redo
some of the deployment steps. We call this approach “Deployment-aware debug-
ging” which will be addressed in another paper.

Building a loosely coupled distributed grid system across organizational bounda-
ries using OGSA is non-trivial and different from building a system over a LAN. This
paper demonstrates that there is a need for better understanding of, and support for,
cross-cutting non-functional inter-organizational roles such as deployment. There is a
lot more work to do before we realize the vision of the Grid.

References

1. The UK-OGSA Evaluation Project. http://sse.cs.ucl.ac.uk/UK-OGSA/
2. Foster, I., Kishimoto, H., Savva, A. (eds.): The Open Grid Services Architecture, Version

1.0 (2005). http://www.gridforum.org/documents/GFD.30.pdf
3. Globus Toolkit 3.0. http://www-unix.globus.org/toolkit/3.0/ogsa/docs/
4. Brebner, P. (ed.): UK-OGSA Evaluation Project Report 1.0: Evaluation of Globus Toolkit

3.2 (GT3.2) Installation (2004). http://sse.cs.ucl.ac.uk/UK-OGSA/Report1.pdf
5. Brebner, P. (ed.): UK-OGSA Evaluation Project Report 2.0: Evaluating OGSA Across Or-

ganizational Boundaries (2005). http://sse.cs.ucl.ac.uk/UK-OGSA/Report2.pdf
6. Brebner, P., Two Ways to Grid: A Service-centric vs. Resource-centric evaluation of the

Open Grid Services Architecture (OGSA), CSIRO Technical Report (2005).http://www.
ict.csiro.au/staff/Paul.Brebner/TwoWaysToGrid.htm

7. S. Tuecke, et. al.: Open Grid Services Infrastructure (OGSI) Version 1.0. Global Grid Fo-
rum Draft Recommendation (2003)

8. An Interview with Argonne’s Steve Tuecke. IBM developerWorks (2003). http://www-
106.ibm.com/developerworks/java/library/j-tuecke.html?dwzone=java

9. UK e-Science Certification Authority. http://www.grid-support.ac.uk/ca/
10. Girard, J.: Staging Files for Grid Jobs using Globus GASS Server. IBM developerWorks

(2003). http://www-106.ibm.com/developerworks/grid/library/gr-cglobus3/
11. Workspace Management Service. http://www-unix.mcs.anl.gov/workspace/tech_preview

_2/docs/index.html
12. Elwasif., W., Plank, J., Wolski, R.: Data Staging Effects in Wide Area Task Farming Ap-

plications. IEEE International Symposium on Cluster Computing and the Grid. Brisbane,
Australia (2001)

194 P. Brebner and W. Emmerich

13. Yahyapour, R.: Grid Resource Management and Scheduling. Europar 2004 Tutorial.
http://www.di.unipi.it/europar04/Tutorial3/Europar_Tutorial_GRMS_Yahyapour.ppt

14. Goldsack, P., Guijarro, J., Lain, A., Mecheneau, G., Murray, P., Toft, P.: SmartFrog: Con-
figuration and Automatic Ignition of Distributed Applications. HP (2003).
http://www.hpl.hp.com/research/smartfrog/papers/SmartFrog_Overview_HPOVA03.May.
pdf

15. Kong, D., Novov, V., Tsalikis, D., Koukoulas, S., Karampaxoglou, T.: Deployment in
Computational Distributed Grids. Main Report. UCL MSc Data Communications, Net-
works and Distributed Systems Project (2004).

16. jGuru: Remote Method Invocation. Sun Developer Network. (2000).
http://java.sun.com/developer/onlineTraining/rmi/RMI.html

17. Globus 3.2.1. Job Submission Errors. Globus-discuss (2004). http://www-
unix.globus.org/mail_archive/discuss/2004/10/msg00276.html

18. The PERMIS project. http://www.permis.org/en/index.html
19. GT3.2 Installation Guide. http://www-unix.globus.org/toolkit/docs/3.2/installation/

install_installing.html#rootNonroot
20. Enterprise JavaBeans Specification, Version 2.1. Sun Microsystems,

http://java.sun.com/products/ejb/docs.html
21. JNLP. http://java.sun.com/products/javawebstart/faq.html, http://java.sun.com/developer/

technicalArticles/Programming/jnlp/
22. Dadzie, J.: Understanding Software Patching. ACM QUEUE. March (2005)
23. Matthew, S.: Examining the Validity of Inversion of Control. The Server Side. (2005).

http://stage.theserverside.com/articles/article.tss?l=IOCandEJB
24. Fowler, M.: Inversion of Control Containers and the Dependency Injection Pattern. (2004).

http://www.martinfowler.com/articles/injection.html
25. Spille, M.: Inversion of Control Containers. (2004). http://www.pyrasun.com/mike/

mt/archives/2004/11/06/15.46.14/index.html
26. C. Mattmann, S. Malek, N. Beckman, M. Mikic-Rakic, N. Medvidovic and D. Crichton.

GLIDE: A Grid-based, Lightweight, Infrastructure for Data-intensive Environments.
European Grid Conference (EGC2005), pp. 68-77. Amsterdam, February (2005)

27. Lamanna, M., Rocha, R.: Grid Deployment Use Cases. LHC CERN (2004).
http://lcg.web.cern.ch/LCG/peb/GTA/GTA-ES/es-008.doc

28. Foster, I., Gannon, D., Kishimoto, H., Von Reich, J. (eds.): OGSA Deployment Use Cases.
Global Grid Forum (2004). http://www.ggf.org/documents/GWD-I-E/GFD-I.029v2.pdf

29. Fenglian X., Eres, M., Baker, D., Cox, S.: GITS, Grid Integration Test Script. IEEE Inter-
national Conference on Services Computing (2004) 281 - 287

30. Goscinski, W., Abramson, D.: Distributed Ant: A System to Support Application Deploy-
ment in the Grid. IEEE/ACM International Workshop on Grid Computing (2004) 436-443.

31. Small, L.: The IBM autonomic deployment framework. http://www-128.ibm.com/
developerworks/autonomic/library/ac-abc2/

32. Lacour, S., Perez, C., Priol, T.: Deploying CORBA Components on a Computational Grid:
General Principles and Early Experiments Using the Globus Toolkit. In: Emmerich, W.
Wolf, L. (eds.): Proceedings of the 2nd International Working Conference on Component
Deployment (CD 2004). Number 3083 LNCS. Edinburgh, Scotland, UK. Springer-Verlag
(2004) 35-49

33. PACMAN: http://physics.bu.edu/~youssef/pacman/
34. Grid Packaging Tools (GPT): http://www.ncsa.uiuc.edu/Divisions/ACES/GPT/

 Deployment of Infrastructure and Services in the OGSA 195

35. Childs, S., Coghlan, B., O’Callaghan, D., Quigley, G., Walsh, J.: Deployment of Grid
Gateways using Virtual Machines. Proceedings EGC'05. Amsterdam (2005).
https://www.cs.tcd.ie/coghlan/pubs/egc-vm-deployment.pdf

36. Huang, G., Wang, M., Ma, L., Lan L., Liu, T.: Towards architecture model based deploy-
ment for dynamic grid services. IEEE International Conference on E-Commerce Technol-
ogy for Dynamic E-Business (2004) 14 – 21

37. Ting, A., Caixia, W., Yong, X.: Dynamic Grid Service Deployment (2004).
http://www.comp.nus.edu.sg/~wangxb/SMA5505-2004/xieyong-report1.pdf

38. Musunoori, S., Eliassen, F., Staehli, R.: QoS-aware component architecture support for
grid. WET ICE 2004. 13th IEEE International Workshop on Enabling Technologies: Infra-
structure for Collaborative Enterprises (2004) 277 - 282

39. Weissman, J.: Enabling communities of collaborating users and services on the Grid.
http://www.dtc.umn.edu/resources/weiss.ppt#1

40. Friese, T., Smith, M., Freisleben, B.: Hot service deployment in an ad hoc grid environ-
ment. ICSOC (2004) 75-83

41. Wood, M., Ferner, C., Brown, J.: Towards a GUI for Grid Services. Proceedings of the
IEEE Southeastern Conference. Greensboro NC (2004) 316-324 http://people.uncw.edu/
cferner/papers/IEEESECON2004_047.pdf

42. Wu, Y.: CGSP 1.0 (China Grid Support Platform). Asia Summit Grid (2005).
http://www.gridforumkorea.org/asiagridsummit2005/data/WuYongWei.pdf

43. Talwar, V., Milojicic, D., Wu, O., Pu, C., Yan, W., Jung, G.: Approaches for Service De-
ployment. IEEE Internet Computing Vol. 9 No. 2 March/April (2005).

44. Anderson, P., Smith., E.: OGSAConfig. http://groups.inf.ed.ac.uk/ogsaconfig/
45. Tomcat Manager. http://jakarta.apache.org/tomcat/tomcat-4.0-doc/manager-howto.html
46. CypressLogic ObjectView Axis Deployment Product. http://www.cypresslogic.

com/home.html
47. Harrison, A., Taylor, I.: WSPeer - An Interface to Web Service Hosting and Invocation.

19th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2005)
48. Beckles, B.: Removing digital certificates from the end-user’s experience of grid environ-

ments. UK eScience All Hands Meeting (2004)
49. Virtual Organizations Membership Service (VOMS). http://edg-wp2.web.cern.ch/edg-

wp2/security/voms/
50. Pearlman, L., Welch, V., Foster, I., Kesselman, C., Tuecke, S.: A Community Authoriza-

tion Service for Group Collaboration. 3rd International Workshop on Policies for Distrib-
uted Systems and Networks. Monterey, California. IEEE (2002).

51. Emmerich, W., Butchart, B., Chen, L., Wasserman, B., Price, S.: Grid Service Orchestra-
tion using the Business Process Execution Language (BPEL). Submitted to Journal of Grid
Computing. (2005)

52. Lamport, L.: http://research.microsoft.com/users/lamport/pubs/distributed-system.txt
53. Llewellyn-Jones, D., Merabti, M., Shi, Q., Askwith, B.: Secure Component Composition

for Personal Ubiquitous Computing. ProgNet Workshop (2003). http://www.cms.
livjm.ac.uk/pucsec/dnload/pucsec02.pdf

54. Brebner, P.: Grid Middleware: Principles, Practice and Potential. UCL Computer Science
Department Seminar (2004). http://sse.cs.ucl.ac.uk/UK-OGSA/GridMiddlwarePPP.ppt

Author Index

Abdellatif, Takoua 134
Akkerman, Anatoly 17

Balasubramanian, Jaiganesh 67
Bay, Till G. 164
Brebner, Paul 181
Brinkkemper, Sjaak 119
Buckley, Alex 149

Cunin, Pierre-Yves 177

Dearle, Alan 37
Deng, Gan 67

Emmerich, Wolfgang 181

Freisleben, Bernd 52
Frénot, Stéphane 33

Gokhale, Aniruddha 67
Guidec, Frédéric 1

Hoareau, Didier 115

Jansen, Slinger 119

Kammüller, Reiner 52
Karamcheti, Vijay 17

Kirby, Graham N.C. 37
Kornaś, Jakub 134

Lestideau, Vincent 177

Mahéo, Yves 115
Malek, Sam 83, 99
Medvidovic, Nenad 83, 99
Merle, Noëlle 177
Mikic-Rakic, Marija 83, 99

Norcross, Stuart J. 37

Otte, William 67

Paal, Stefan 52
Pauls, Karl 164

Roussain, Hervé 1
Royon, Yvan 33

Schmidt, Douglas C. 67
Stefani, Jean-Bernard 134

Totok, Alexander 17

Walker, Scott M. 37

	Frontmatter
	Middleware Integration
	Cooperative Component-Based Software Deployment in Wireless Ad Hoc Networks
	Infrastructure for Automatic Dynamic Deployment of J2EE Applications in Distributed Environments

	Patterns for Deployment
	Component Deployment Using a Peer-to-Peer Overlay
	A Methodology for Developing and Deploying Distributed Applications

	QOS Issues
	Crosslets: Self-managing Application Deployment in a Cross-Platform Operating Environment
	DAnCE: A QoS-Enabled Component Deployment and Configuration Engine

	Adaptability, Customisation and Format Aware Deployment
	Improving Availability in Large, Distributed Component-Based Systems Via Redeployment
	A Decentralized Redeployment Algorithm for Improving the Availability of Distributed Systems

	Dependability
	Propagative Deployment of Hierarchical Components in a Dynamic Network
	Modelling Deployment Using Feature Descriptions and State Models for Component-Based Software Product Families

	Assembly and Packaging
	J2EE Packaging, Deployment and Reconfiguration Using a General Component Model
	A Model of Dynamic Binding in .NET

	Case Studies
	Reuse Frequency as Metric for Dependency Resolver Selection
	ORYA: A Strategy Oriented Deployment Framework
	Deployment of Infrastructure and Services in the Open Grid Services Architecture (OGSA)

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

